什麼是GPU運算?

文章推薦指數: 80 %
投票人數:10人

GPU運算是使用GPU(圖形處理單元)作為協處理器來加速CPU,以加快科學、分析、工程、消費和企業應用程序的運行速度。

GPU加速器於2007年由NVIDIA®率先推出, ... 知識庫 人工智能 什麼是GPU運算? 什麼是GPU運算? GPU運算是使用GPU(圖形處理單元)作為協處理器來加速CPU,以加快科學、分析、工程、消費和企業應用程序的運行速度。

GPU加速器於2007年由NVIDIA®率先推出,現已在世界各地為政府實驗室、高校、公司以及中小型企業的高能效數據中心提供支持。

GPU能夠使從汽車、手機和平板電腦到無人機和機器人等平台的應用程序加速運行。

GPU通過卸載壹些運算密集且耗時的代碼部分來加速CPU上運行的應用程序。

應用程序的其余部分仍在CPU上運行。

從用戶的角度來看,應用程序運行得更快,因為它使用GPU的大規模並行處理能力來提高性能。

這被稱為“異構”或“混合”運算。

CPU由4到8個CPU內核組成,而GPU由數百個較小的內核組成。

它們共同運作以應對應用程序中的數據。

這種大規模並行架構為GPU提供了高運算性能。

有許多GPU加速的應用程序提供了訪問高性能運算(HPC)的簡便方法。

GPU與CPU的區別 應用程序開發人員使用NVIDIA發明的名為“CUDA”的並行編程模型來利用並行GPU架構的性能。

所有NVIDIAGPU-GeForce®,Quadro®和Tesla®-均支持NVIDIA®CUDA®並行編程模型。

TeslaGPU設計為運算加速器或配套處理器,針對科學和技術運算應用進行了優化。

最新的Tesla20系列GPU基於CUDA平台的最新實現,稱為“Fermi架構”。

Fermi具有關鍵的運算功能,例如500+gigaflops的IEEE標準雙精度浮點硬件支持,L1和L2緩存,ECC內存錯誤保護,分布在整個GPU中的共享內存形式的本地用戶管理數據緩存,合並內存訪問等等。

GPU運算的歷史 圖形芯片起初是固定功能的圖形管道。

多年來,這些圖形芯片變得越來越可編程,這導致NVIDIA推出了第壹款GPU。

在1999-2000時間框架內,運算機科學家以及醫學成像和電磁學等領域的研究人員開始使用GPU加速壹系列科學應用。

這是稱為GPGPU或通用GPU運算的運動的出現。

挑戰在於GPGPU需要使用OpenGL和Cg等圖形編程語言來編程GPU。

開發人員必須使他們的科學應用程序看起來像圖形應用程序,並將它們映射到繪制三角形和多邊形的問題。

這限制了GPU對科學的巨大性能的可訪問性。

NVIDIA意識到了將這種性能帶給更大的科學界的潛力,並投資於修改GPU以使其完全可編程用於科學應用。

此外,它還增加了對C,C++和Fortran等高級語言的支持。

這導致了GPU的CUDA並行運算平台。

阿里雲GPU雲伺服器服務 阿里雲GPU雲伺服器服務基於GPU應用的運算服務,具有實時高速、並行運算、浮點運算能力強等特點,適用於視頻解碼、圖形渲染、深度學習、科學運算等應用場景。

產品型號包括AMDS7150、NvidiaM40、NvidiaP100、NvidiaP4、NvidiaV100。

點擊鏈接了解更多關於GPU雲伺服器。

相關文章 什麼是雲端運算 知識庫團隊 什麼是Iaas 知識庫團隊 什麼是Paas 知識庫團隊 什麼是公用雲 知識庫團隊 什麼是私有雲 知識庫團隊 什麼是混合雲 知識庫團隊 什麼是無伺服器 知識庫團隊 什麼是對象存儲 知識庫團隊 什麼是區塊鏈 知識庫團隊



請為這篇文章評分?