Constitutive versus Responsive Gene Expression Strategies ...
文章推薦指數: 80 %
We find that the optimal constitutive expression level depends on how the costs and benefits increase with the expression level: in one case ... BrowseSubjectAreas ? ClickthroughthePLOStaxonomytofindarticlesinyourfield. FormoreinformationaboutPLOSSubjectAreas,click here. Article Authors Metrics Comments MediaCoverage ReaderComments Figures Figures AbstractMicrobesrespondtochangingenvironmentsbyadjustinggeneexpressionlevelstothedemandforthecorrespondingproteins.Adjustingproteinlevelsisslow,consequentlycellsmayreachtheoptimalproteinlevelonlybyatimewhenthedemandchangedagain.Itisthereforenotaprioriclearwhetherexpression“ondemand”isalwaystheoptimalstrategy.Indeed,manygenesareconstitutivelyexpressedatintermediatelevels,whichrepresentsapermanentcostbutprovidesanimmediatebenefitwhentheproteinisneeded.Whicharetheconditionsthatselectforaresponsiveoraconstitutiveexpressionstrategy,whatdeterminestheoptimalconstitutiveexpressionlevelinachangingenvironment,andhowisthefitnessofthetwostrategiesaffectedbygeneexpressionnoise?Basedonanestablishedmodelofthelac-andgal-operonexpressiondynamics,westudythefitnessofaconstitutiveandaresponsiveexpressionstrategyintime-varyingenvironments.Wefindthattheoptimalconstitutiveexpressionleveldiffersfromtheaveragedemandforthegeneproductandfromtheaverageoptimalexpressionlevel;dependingontheshapeofthegrowthratefunction,theoptimalexpressionleveleitherprovidesintermediatefitnessinallenvironments,ormaximizesfitnessinonlyoneofthem.Wefindthatconstitutiveexpressioncanprovidehigherfitnessthanresponsiveexpressionevenwhenregulatorymachinerycomesatnocost,andwedeterminetheminimalresponseratenecessaryfor“expressionondemand”toconferabenefit.Environmentalandinter-cellularnoisefavortheresponsivestrategywhilereducingfitnessoftheconstitutiveone.Ourresultsshowtheinterplaybetweenthedemand-frequencyforageneproduct,thegeneticresponserate,andthefitness,andaddressimportantquestionsontheevolutionofgeneregulation.Someofourpredictionsagreewithrecentyeasthighthroughputdata,forothersweproposetheexperimentsthatareneededtoverifythem. Citation:GeiselN(2011)ConstitutiveversusResponsiveGeneExpressionStrategiesforGrowthinChangingEnvironments.PLoSONE6(11): e27033. https://doi.org/10.1371/journal.pone.0027033Editor:VladimirBrezina,MountSinaiSchoolofMedicine,UnitedStatesofAmericaReceived:June20,2011;Accepted:October9,2011;Published:November30,2011Copyright:©2011NicoGeisel.Thisisanopen-accessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense,whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalauthorandsourcearecredited.Funding:ThisworkwassupportedbytheSpanishMinistryofScienceandInnovationgrantno.FIS2008–04386,andtheSpanishMinistryofEducationgrantno.FPU2007–00975.Thefundershadnoroleinstudydesign,datacollectionandanalysis,decisiontopublish,orpreparationofthemanuscript.Competinginterests:Theauthorhasdeclaredthatnocompetinginterestsexist. IntroductionInnaturalenvironmentscellsarefrequentlyfacingvariableconditions,towhichtheymustadaptinordertomaximizegrowthandsurvival.Commonenvironmentalparameterssubjecttofluctuationsarethekindsofnutrientthatareavailable,thetemperature,thesaltcontentofthesurroundings,andtheconcentrationoftoxinsandantibiotics. Understandingmicrobialbehaviorsinchangingenvironmentsprovidesinsightsintotheevolutioninnaturalhabitatswherethephysiologicdemandsareconstantlychanging[1]–[3].Manipulationofthesestrategiescanberelevantinindustrialprocessing,e.g.fermentation[4],antibiotictherapies[5]andbiotechnologicalprocessoptimization. Prokaryotesandeukaryotescopewithenvironmentalchangesbyswitchingbetweendifferentgene-expressionstates(phenotypes)[2],[3],[6]–[9],typicallyaccompaniedbymetabolicandmorphologicchanges[7],[10],[11].Aparticularphenotypeprovidesagrowthorsurvivaladvantageinoneenvironmentalcondition,butismaladaptedinotherenvironments.Themostprominentexamplesarethevegetativeandpersistentstatesofbacterialpopulations[2],[3],[12]–[14].Inthevegetativestatecellscanrapidlyproliferatebutarehighlyvulnerabletoantibioticstress.Inthepersistentstate,ontheotherhand,theycansurviveantibioticexposurebutcannotdivide.Similarsituationsariseforpili-expressionandatthelevelofmetabolicsystems:productionoflacZisenergeticallycostlyandreducesE.coli'sgrowthrateintheabsenceoflactose[15]–[18].Whenlactoseistheonlyenergysource,inturn,productionoflacZenhancesgrowth[16],[19],[20]. Howmicrobialpopulationsmaximizetheirtime-averagedgrowthrateinachangingenvironmenthasbeeninvestigatedexperimentallyandtheoreticallyalongtwomajorlines[2],[6],[21]–[26].Intheresponsiveswitchingstrategyallcellsswitchintotheadaptedstateuponanenvironmentalchange.Withstochasticswitchingapopulationfollowsabet-hedgingstrategybecausecellsalsotransitrandomlyintomaladaptedstates.Therebythepopulationmaintainsasmallmaladaptedsubpopulationwhichmaybewell-adaptedandreadyforgrowthafterafutureenvironmentalchange.Previousstudieswerebasedontheassumptionthatcellularphenotypetransitionsoccurstochasticallyatagivenrate(alsointheresponsivecase).Thereforeswitchingismodeledasaninstantaneouseventwhich,however,occursafterarandomdelay[2],[3],[6],[21],[23]–[25].Accordingly,cellsexistonlyintwostates(fit,unfit)butneverinthetransientstatesofadaptation,betweentheunfitandthefitphenotype.Animplicitassumptionisthatthetimeintervalsbetweenswitchingeventsareverylarge,i.e.,transitionsoccuronlyonceinmanygenerations[23]. Mostphenotypictransitions,however,areresponsiveandtakeseveralhours,inparticulariflargescalemetabolicandmorphologicchangesareinvolved[5],[10],[11].Theyproceedthroughasequenceofintermediatestateswherethefitstateisupregulatedwhiletheunfitphenotypeisdownregulated[5],[17],[27]–[29].Whenthetimescaleofphenotypicswitching(adaptation)iscomparabletotheenvironmentaldurationsthestatesofintermediateadaptationbecomerelevantforthetotalfitnessandshouldthereforebetakenintoaccount-unlikeatwophenotype(fit,unfit)scenario.Undertheseconsiderationsitappearsthatathirdstrategytocopewithenvironmentalfluctuationsisapassive“intermediate”one,wherecellsconstitutivelyexpressanintermediatephenotypeinallenvironments.Indeed,thisstrategyappearstobewidelyusedsincemanyprocaryoticandeucaryoticgenesareconstitutivelyexpressedalthoughthedemandforexpressionvariesintime.Giventhatregulatedgeneexpressionisadaptivebydefinition,itisnotaprioriclearwhyconstitutiveexpressioncanprovideanadvantage.Whatthendetermineswhetherageneshouldbeunderregulatedorconstitutiveexpression? Thefocusofthisarticleistounderstandhowenvironmentalfactorsdeterminetheoptimalconstitutiveexpressionlevelsthatmaximizesnetgrowthinachangingenvironment,andtounderstandwhyandunderwhichconditionsconstitutiveexpressionconfersagrowthadvantagecomparedtoregulated,responsiveexpression. Toanswerthesequestionsweproposeamodelthatbuildsonpreviouslyestablisheddescriptionsofthelac-andgal-operonexpressiondynamics[17],[22],[30],andcomparethetime-averagedgrowthratesofbothstrategiesinatwo-stateenvironment,takingaccountofenvironmentalandinter-cellularnoise. Wefindthattheoptimalconstitutiveexpressionleveldependsonhowthecostsandbenefitsincreasewiththeexpressionlevel:inonecasegrowthismaximizedbeconstitutivelyexpressingthegeneatanintermediatelevelandintheothercasethegeneiseitherfullyexpressedorfullyrepressed.Surprisingly,theoptimumconstitutiveexpressionlevelinachangingenvironmentisalwaysdifferentfromthetime-averageddemandforthegeneproduct.Wefindthataresponsivestrategycanhavelowerfitnessthanaconstitutivestrategyevenwhenthecostforsensingandregulatorymachineryisneglected,andwedeterminetheminimaladaptationratenecessaryforaresponsetoconferabenefitoverconstitutiveexpression.Environmentalandinter-cellularnoisefavortheresponsivestrategy,whereastheydecreasethefitnessoftheconstitutivestrategy.Ouranalysisillustratestheinterplaybetweendemand-frequencyforageneproduct,maladaptationcost,andthetimescaleofageneticresponse,anditraisesimportantquestionsontheevolutionofgeneexpressionstrategies. MethodsWeproposeamodelbasedontheexpressiondynamicsofmetabolicoperonsasdescribedin[16],[17],[22],[31].Wedenotetheexpressionstateofacellby,wherethefullyinducedstateisoptimal(maximizingthegrowthrate)intheenvironmentwhereastherepressedstatedenotesaphenotypethatisoptimalinenvironmentseeFigure1A[16],[22].Uponanenvironmentalchangeapopulationadaptsbyresponsivelyswitchingeitherintothe‘on’orthe‘off’state(curvedarrows).Formanysystemsthesetransitionsfollowanexponentialrelaxation[17],[22],[30]–[33].Withtheadaptedstatesbeingandandarelaxationratethisismodeledby(1) (2) Download: PPTPowerPointslidePNGlargerimageTIFForiginalimageFigure1.Modelforcellulargrowthandadaptationoftheexpressionstatex(t)inatwo-stateenvironment.(A)Inenvironment(bottom)theexpressionstate(‘off’)allowsforproliferationatthehighestrate.Uponanenvironmentalchange(top)thestateismaladaptedandthepopulationgrowsatareducedrate,whereisthecostofmaladaptation.Intheadaptationphase(,curvedarrows)cellssuppresstheunfitphenotypeandcontinuouslyupregulatethefitone.Thisincreasestheirgrowthrateuntiltheyarefullyadaptedtothenewenvironment(for:).Wealsoconsideraconstitutive-passivestrategywherecellsmaintainaconstantstatethroughoutalltimesinbothenvironments.(B)Growthrateasafunctionoftheexpressionstateinenvironment(red)andinenvironment(blue).Dotsshowtheexperimentallymeasured[16]benefitofE.coliexpressingthelac-operonatafractionoftheoptimallevel()atlactose.Wegeneralizethiscostfunctiontoaccountforconvex(,fulllines)orconcave(dashedlines)dependence.(C)Adaptationdynamics(top)andgrowthrates(bottom)inanenvironmentalcycle.Thefullblacklinecorrespondstoapopulationwhichrespondstentimesfasterthantheenvironmentalfrequency()andwhichthereforetrackstheenvironmentalchangeoccurringat,eventuallyreachingtheadaptedstates.Thegraydashedlinecorrespondstoaslowly-adaptingpopulation()whichneverreachestheadaptedstatesandinsteadoscillatesaroundanintermediateexpressionlevel.Theconstitutive-passivepopulation(dashed-greenline,)hasahighgrowthrateinenvironmentduring,butasmalloneinduring. https://doi.org/10.1371/journal.pone.0027033.g001Herereferstothetimesincethelastenvironmentalchangeandistheexpressionstatewithwhichthepopulationentersintoanewenvironment.Thismodelaccuratelyreproducestheamplitudeandphaseshiftresponseofthegal-operontoexternalglucosedriving(overagalactosebackground)withdifferentfrequencies,asmeasuredin[34](seeFigure2). Download: PPTPowerPointslidePNGlargerimageTIFForiginalimageFigure2.Amplitude-responseandphaseshiftofthemodelcomparedtotheYeastYPH499gal-operon.Wedefinethephaseshiftinourmodelastwicethetimerequiredtoreachthehalf-maximumexpressionlevelof().ThemodelaccordingtoEq.1andEq.2mimicsthegalactoseutilizationnetworkresponseoverabroadfrequencyrange(datapointsasmeasuredin[34]).Thedeviationoftheexperimentalphaseshiftfromthepredictedphaseshiftathighfrequenciesindicatesthattheresponsedoesnotexactlyfollowanexponentialrelaxation.Indeed,thefeedbackarchitectureofthegal-networkmaygiverisetoshortdelayswhichbecomenoticeableathighcyclefrequencies(phaseshifts),whichwedonottakeintoaccountinourmodel. https://doi.org/10.1371/journal.pone.0027033.g002Cellsintheoptimalstategrowatamaximalrate,whereassuboptimalstatesconferinferiorgrowthrates[2,316,17,19,22].ThedotsinFigure1BshowthegrowthbenefitofE.coliundertheassumptionthatthelacoperonisinducedatafractionoftheoptimalinductionlevelinaconstantlactoseenvironment()(datapointsasmeasuredin[16]).Asageneralizationweassumethatthereductionofthegrowthratewhennotintheoptimalstateisproportionaltocost-constantsor(dependingontheenvironment)andthatitdependsmonotonouslyontheexpressionstatewithexponents(asrecentlysuggestedin[35]):(3) (4) Here,orrespectively,isthedeviationfromtheoptimalphenotypeinagivenenvironment.Theparametersallowforconvexorconcavedependenceofthegrowthrateontheexpressionlevel[16],e.g.,forthebenefit(cost)ofproducingametabolicenzymeinthepresence(absence)ofitssubstrate.Figure1Billustratestheserelationshipsforenvironment(inblue)andenvironment(inred)with(dashedlines)and(fulllines).Incontrasttopreviousstudies[6],[33]wemaketheimportantbutplausibleassumptionthatthecostforsensingandsignalingmachineryisnegligible.Wethusfocusonlyonthedynamicalaspectsoftheresponse. Apassivepopulationconstitutivelyexpressesthesamephenotypethroughoutallenvironments.Equations3and4thenapplywith. Figure1C(top)showstheadaptationdynamicsofthephenotype(toppanel)andofthegrowthrate(bottompanel)accordingtoEq.1toEq.4.Theenvironmentchangesfromtoatwhereisthetotaldurationoftheenvironmentalcycleand. E.coliandotherprocaryotesarebelievedtobeoptimizedforfastgrowth.Wethereforetakethetime-averagedgrowthrateasameasureoffitnessinthechangingenvironment[6],[22]–[25].Withoutlossofgeneralityweassumethatanenvironmentalcyclestartswithconditionlastingforatime,andendswithenvironmentofduration().Thetime-averagedgrowthratesandoftheconstitutiveandresponsivepopulationsareobtainedbyintegratingEq.3andEq.4overthedurationofafullcycle:(5)(6) ThesecondtermsintheparenthesesofEq.5aretheintegratedcostsduringtheadaptationphasetowardsthefitstate,anddecreasewiththeresponserate. Itisinstructivetofirstconsiderperiodicenvironmentalcyclesandwechosethecycledurationasthereferencetimescale,withand.Intheperiodiccasetheup-and-downregulationdynamicsofwilleventuallybecomeperiodicwiththephenotypicstatesattheendof(beginningof),andattheendofgivenby(7)(8) ThesecorrespondtothefixedpointswhenpropagatingtheexpressionstateaccordingtoEq.1andEq.2overonecycle.Fromnowonwewillassumethatmaladaptationandgrowthratefunctionaresymmetricinbothenvironments(and)andsetthemaximalgrowthrate. Results Optimalconstitutiveexpressionlevelsinatime-varyingenvironment Asameasureoffitnesswedeterminethetime-averagedgrowthrateoftheconstitutivestrategy(seeEq.6)whichisshowninFigure3(colorcoded)inaperiodicenvironment.Theconstitutivephenotypeisshownonthex-axisandthefractionofenvironment(thedemandforexpression)isshownonthey-axis.PanelAshowsthefitnessforandpanelBfor.Themaladaptationcostis,thusinsignificantlymaladaptedstatesthepopulationhasanegativegrowthrate.Thewhitelinesdelineatetheregimesinwhichthenet-growthrateispositive.Thedashedcurvesshowtheoptimalconstitutivephenotypesthatmaximizethetime-averagedgrowthrate. Download: PPTPowerPointslidePNGlargerimageTIFForiginalimageFigure3.Time-averagedgrowthratesofconstitutivepopulationsinperiodicenvironments.Thefitnessisshownasafunctionoftheconstitutiveexpressionlevelandofthefractionofenvironment(theenvironmentwhichrequiresexpression).Regimesofpositivenet-growtharedelineatedbythewhiteline(maladaptationcost).Leftandrightpanelsshowthetime-averagedgrowthrateforaconvex()andaconcave()growthratefunction.Theoptimalconstitutiveexpressionlevelisindicatedbythedashedline.Foraconvexorlineardependence()anall-or-nothingstrategywithmaximalgrowthinoneenvironmentandnogrowthintheotherisoptimal.Instrikingcontrast,however,foraconcavedependenceanintermediatestrategywithsuboptimalgrowthinbothenvironmentsisbest.Inbothcasestheoptimalconstitutivelevelisdifferentfromtheaverageoptimum,andfromtheaveragedemandforexpression(i.e.,thediagonal).Notethattheconstitutivestrategycanonlyprovidegrowthwhenitisclosetoitsoptimumandwhentheenvironmentissufficientlyconstant(or).Insymmetricenvironments()nopositivenet-growthispossible,henceregulationbecomesimperativeinthisregime. https://doi.org/10.1371/journal.pone.0027033.g003Interestingly,whenthegrowthrateisalinearorconvexfunction(),theoptimalconstitutivestrategyisanall-or-nothingstrategy.Inthiscasenet-growthinachangingenvironmentismaximizedbymaximizinggrowthintheprevailingenvironmentwhilegrowthisminimalintheother,cf.Figure3A.Incontrast,theoptimalstrategyisanintermediateone,withintermediatefitnessinbothenvironments(cf.Figure3B),onlywhenthegrowthrateisaconcavefunction(,asforthebenefitoflac-expression).Ingeneral,andcontrarytowhatonemighthaveexpected,theoptimalconstitutivephenotypeinatime-varyingenvironmentdoesnotcorrespondtothetime-averageddemandforthisphenotypenortotheaverageoptimum,i.e.,aphenotypehassignificantlyinferiornetfitnesscomparedto. Whennoneoftheenvironmentsprevails(),theconstitutivestrategycannotprovidegrowth.Apassivestrategyisthereforenotanoptionathighmaladaptationcostsandwhenbothenvironmentsareequallyfrequent,makingresponsiveexpressionregulationanimperativeinthisregime.Wementioninadditionthatforthecurveofoptimalexpressionisstretchedtowardshigher(lower)expression,whereasitbecomeshighlynonlinearandstep-likefor. Constitutiveexpressioncanprovidehigherfitnessthanregulatedexpression Similarlyasnetproliferationrequiresthatthepassivepopulationissufficientlywelladapted,theresponsivepopulationcanonlyachieveapositivenetgrowrateathighmaladaptationcostsiftheresponserateliesaboveathreshold,cf.thewhitelineinFigure4A().Whentheenvironmentspendsequalamountsoftimeinasin()thepopulationspendssignificantamountsoftimetransitingbetweenphenotypesratherthanintheadaptedphenotypes,whichreducesthetime-averagedgrowthrate.Inparticular,whentheresponserateistoosmallthepopulationneverreachestheadaptedstate,butinsteadlow-passfilterstheenvironmentalchangeandslowlyoscillatesaroundaphenotype,whichcorrespondstothetime-averageddemand,seealsoFigure1C(dashedgrayline)and[34].Whentheenvironmentaldurationsareasymmetric(or)thepopulationremainspartiallyadaptedtothepredominantenvironmentintheenvironmentofshortduration.Thepopulationtherebyhasalowergrowthrateinthesporadicenvironment,butachievesahigheraveragegrowthrate. Download: PPTPowerPointslidePNGlargerimageTIFForiginalimageFigure4.Fitnessofaresponsivepopulation(A)andstrategyphasediagram(B).(A)Theresponsivepopulationhasnegativegrowthwhenitsresponserateistoosmall;thegrowth-thresholdisindicatedbythewhiteline.Thenetmaladaptationcostislargestat(whenbothenvironmentshaveequaldurations)becauseinthisregimethepopulationspendsmostofthetimetransitingbetweenadaptedstatesratherthanbeingadapted.(B)showstheregimesofoptimalstrategy(constitutiveorresponsive)asafunctionofthedemandforexpression(environment)andresponserate.Theregimeinwhicharesponsivestrategywithrateconfershigherfitnessthanaconstitutivestrategyisindicatedinwhite,andforastochasticenvironmentinlightgrayandwhite.Whenenvironmentsareasymmetricaslowresponsivepopulationlagsbehindtheenvironmentandcannotreachanadaptedstateinanyofthetwoconditions.Thereforeithaslowerfitnessthantheconstitutivestrategywhichprovidesimmediatealthoughintermediategrowthinbothenvironments.Thephaseboundariesareindependentofthemaladaptationcost. https://doi.org/10.1371/journal.pone.0027033.g004Geneexpressionlevelscanbeadjustedtotheiroptimumbyafewpointmutationsandwithinafewhundredgenerations[16].Wethereforemaketheplausibleassumptionthattheconstitutivepopulationisoptimallyadaptedtoanenvironmentalcycle,i.e..Sincetheresponsivestrategyfollowsenvironmentalchangesandapproachestheoptimumstateinagivenenvironment,aresponseshouldalwaysconfersuperiorgrowththanconstitutiveexpression.Figure4Bcomparesthetime-averagedgrowthrateoftheconstitutivestrategywitharesponsivestrategyofadaptationrate( = 1).Thereexistthreeregimesindicatingwhetheraconstitutiveoraresponsivestrategyconfersfastergrowth.ThewhiteareainFigure4Benclosestheregimeinwhichtheresponsivepopulationhasahighertime-averagedgrowthrate.Whentheresponseratehighlyexceedstheenvironmentalrateofchangethepopulationfollowstheenvironmentquasi-instantaneouslyandisquasi-alwaysadapted. Remarkably,however,as,thetime-averagedgrowthrateoftheresponsivepopulationbecomessmallerthantheoneoftheconstitutivelyexpressingpopulation(indicatedbythegrayshadedareas).Inparticularinasymmetricenvironments()theconstitutivepopulationcanachievesuperiorgrowthevenwhentheresponserateistentimeslargerthantheenvironmentalfrequency.Consequently,respondingtoenvironmentalchangesprovidesabenefitonlyiftheresponserateliesaboveathreshold.Interestinglythissuggeststhatafastresponsecannotevolvefromconstitutiveexpressionviaaslowresponsebecausefitnessalongthispathwouldhavelowerthanconstitutivefitness. Theslowergrowthoftheresponsivepopulationisaconsequenceofthelow-passfilteringwhichoccurswhentheadaptationtimeislongerthanthedurationoftheshortenvironment.Asexplainedabove,thephenotypicstateslowlyoscillatesaround(theaveragedemand)whichissuboptimalcomparedtotheconstitutivelevel.Inanasymmetricenvironmentthesporadicconditiondrivestheresponsivepopulationawayfromthestatewhichisadaptedintheprevailingcondition.Theresponsivepopulationthereforecannotreachtheadaptedstateinanyofthetwoenvironments.Theconstitutivepopulation,ontheotherhand,benefitsfromhavingintermediategrowthwithoutadelayinbothenvironments(at),ormaximalgrowthintheprevailingenvironment(at). Importantly,thephaseboundariesareindependentofthemaladaptationcost.Withoutgoingintodetails,wepointout,thatwhenislargethereexisttworegimesinwhichthepassivepopulationhasapositivenet-growthrate,whereastheresponsiveonehasanegativenetgrowthrate.Whenthemaladaptationcostsaredifferentinthetwoenvironments,thephaseboundariesbecomeasymmetricandareshiftedalongandthemaximalgrowthbenefitatagivenresponseratedecreasescomparedtothesymmetriccase,renderingconstitutiveexpressionevenmorefavorable.Foraconvexdependenceonthephenotype()thephaseboundaryisshiftedtolargerresponserates(becausethegrowthraterelaxesslowerthantheexpressionstate),whereasitmovestosmallerresponseratesforaconcavedependence(,becauserelaxesfasterthantheexpressionstate). Insummary,aconstitutivestrategycanconfersignificantlybettergrowththanresponsiveexpressionwhentheenvironmentsareasymmetricintheirmaladaptationcostsordurations.Wepointoutthatthisisamereconsequenceofthefiniteadaptationtimesandnotofa“cost-of-regulation”. Fastergrowthinrandomenvironments Althoughperiodicenvironmentsarecommoninnature,moregenerallytheenvironmentaldurationsarerandom.Thepassivestrategy,havingaconstantexpressionlevel,onlyexperiencestheaveragedurationsandthereforeisnotaffectedbytherandomness(environmentaldurationsenterlinearlyintothetimeaveragedgrowthrate).Fortheresponsivepopulation,however,itisnotclearwhetherandhowrandomnesswillaffectitslong-termgrowth. Hereweassumethattheindividualdurations(,)ofenvironmentsandarerandomanduncorrelated,drawnfromexponentialdistributionswithparametersand. Figure5Ashowsthephenotypedynamics(toppanel)andthegrowthrate(bottompanel)fortheresponsivepopulationasafunctionoftime,accordingtoEq.1to4().Inlongerthanaverageconditionsthepopulationhastimetofullyadaptandgrowintheoptimalphenotypeatamaximalrate.Duringtheshortenvironmentalconditions,inturn,thephenotypehasnotenoughtimetosignificantlyadaptandremains“close”tothepreviouslyadaptedphenotype.Uponthenextenvironmentalchangethepopulationcanquicklyreturntothefitstate.Onaveragethepopulationtherebyspendslesstimeinmaladaptedstatesthanifeveryenvironmentalchangehadafixedaverageduration.Thissuggeststhatthenetgrowthrateshouldbelargerinarandomcomparedtoaperiodicenvironment,aconditionwhichhadpreviouslybeenobservedinamodelofstochasticswitching[23]. Download: PPTPowerPointslidePNGlargerimageTIFForiginalimageFigure5.Growthdynamicsinrandomenvironments.(A)Adaptationdynamicsinarandomenvironment(top)andthecorrespondingmomentarygrowthrate(bottom).Duringshortsporadicenvironmentalchangesthephenotyperemainsclosetothepreviouslyfitstate,andtherebyremainsadaptedforthesucceedingenvironment.Asaconsequenceofthefiniteadaptationtimethepopulationlow-passfiltersenvironmentalchangesandonaveragespendslesstimeinmaladaptedstatescomparedtoaperiodicenvironment.Thetime-averagedgrowthrateinafluctuatingenvironmentsignificantlyexceedsthetime-averagedgrowthrateinaperiodicenvironment.Theirratiodefinesthebenefitin(B).Thiseffectbecomesmostrelevantwhentheenvironmentonaveragespendsequalamountsoftimeinbothstates,andwhentheresponserateiscomparabletotherateofenvironmentalchange. https://doi.org/10.1371/journal.pone.0027033.g005Sinceindividualenvironmentaldurationsarerandom,thepopulationdoesnotperiodicallycyclealongthesamephenotypetrajectories.Tocalculatethelong-termgrowth-ratewethereforeevaluateitfromalargenumberofcyclesofrandom-durations.Toensurethatthedistributionofenvironmentaldurationsissampledwithsufficientaccuracywechoosethenumberofcycles.Thetimeaveragedgrowthrateisthenobtainedbyintegratingthegrowthrateovereachcycle(providingaccordingtoEq.5)andweightingitinthesumwiththefractionaldurationofthetotaltime.(9) Foralargenumberofcyclesthetime-averagedgrowthratesettlesatanasymptoticvalue. Figure5Bshowstheratioofthelong-termgrowthrateinarandomenvironment(accordingtoEq.9)tothelong-termgrowthrateinaperiodicenvironment(obtainedaccordingtoEq.5),wherethemeandurationsinthestochasticandperiodiccaseareidentical.Forandtheenvironmentisalmostconstant,hencethereishardlyanyfitnessdifferenceinthisregime.Similarly,iftheresponserateismuchlargerthantheenvironmentalfrequency,thedifferenceissmallbecausethepopulationrapidlyadaptstoevenshortenvironmentalfluctuations.Forandwithresponseratescomparabletotheenvironmentalduration,however,growthinarandomenvironmentissignificantlyfasterthanintheperiodiccase,reminiscentofa(stochastically)resonantphenomenon.Thenetgrowthratedifferencebetweenperiodicandrandomenvironmentsdependsonthecostofmaladaptation:the(on-average)shortertimesinmaladaptedstatesresultinafasternet-growthinthestochasticenvironmentcomparedtotheperiodicone.Hence,thegreaterthecostofmaladaptation,thegreateristhegrowth-rateadvantageinarandomenvironment(here).Thisresultillustratestheimportanceofstudyingmicrobialbehaviorsinanaturalsetting. ThelightgrayareatogetherwiththewhiteareainFigure4Bindicatetheregimeinwhicharesponseisfavoredoveranoptimalconstitutivestrategyinarandomenvironment.Environmentalnoisesignificantlyincreasestheresponsiveregime.Inarandomenvironmenttheconstitutivestrategythereforeappearsasagoodstrategyonlywhenenvironmentalchangesaresporadicandwhenresponsiveregulationisveryslow. Extrinsicnoisebenefitstheresponsivestrategybutreducesfitnessoftheconstitutivestrategy Expressionofmostgenesinunicellularorganismsisstochastic.Asaresult,geneticallyidenticalcellscanshowdifferentproteinexpressionlevels[36]–[40],adoptdifferentstatesinthesameenvironment[5],[7],[13],[22],[41],andrespondtostimuliwithdifferentresponsetimes[42],[43].Differentgenesshowdifferentnoiselevels,andratherthansuppressingnoise[44]somecis-regulatoryelementsseemtopromoteexpressionnoise[45]–[47].Itthereforeisanintriguingquestionwhetherandunderwhichconditionsinter-cellularvariabilitycanprovideabenefitorwhethernoise,asaninevitablesideeffectoflowcopynumbersignaling,alwaysreducesfitness. Weassumethatatthebeginningofanenvironmentalcyclethepopulationisheterogeneousaroundthestateofitscorrespondinghomogeneouspopulation.Twokindsofpopulationheterogeneitycanbedistinguished:inthefirstcaseindividualsubpopulationsofaresponsivepopulationcanhavedifferentresponsetimes(formathematicalconveniencewerefertoresponsetimesratherthanresponserates)[42],[43].Inthesecondscenariodifferentsubpopulationsareindifferentstates.Withdenotingeitheror,thetime-averagedgrowthrateis(10) wheretheintegralisthetotalpopulationsizebythetime(forafullcycle).Hereisthedistributionof,andisthechangeinthesizeofasubpopulation,cf.Eq.5and6. Toensurethatallresponsetimesarepositiveweassumeagamma-distributionfor.Figure6Ashowstherelativefrequenciesofstatesinthepopulationasafunctionoftime.Thedashedlineisforahomogeneouspopulation(,,,and).Initiallyandbytheendofthefirstenvironment(i.e.,)allofthepopulationisinthesamestate,respectively.Duetotheheterogeneousresponse,however,fastrespondingsubpopulationscanquicklyreachtheadaptedstateandproliferateatahighrate,whereasslowlyrespondingsubpopulationsarelaggingbehindthehomogeneousone.Aheterogeneousresponsethereforeresultsintransientheterogeneityofthestatesduringtheadaptationperiod.Theexpectedbenefitofaheterogeneousresponseistwofold:first,fastrespondingsubpopulationsrapidlyadaptanddrivepopulationgrowthatthebeginningofthenewenvironment.Second,slowlyrespondingsubpopulationsremainclosetothepreviouslyfitstate(in)andcanquicklyresumegrowthiftheenvironmentchangesagain()duringtheadaptationperiod,i.e.forsmall. Download: PPTPowerPointslidePNGlargerimageTIFForiginalimageFigure6.Populationdynamicswithheterogeneousresponserates(A)andbenefitcomparedtoahomogeneouspopulation(B).(A)showsthestatedensityasafunctionoftime.Duringtheadaptationphaseapopulationwithheterogeneousresponseratesshowstransientheterogeneityinthestates.Thisresultsinatwofoldbenefit;i)fastrespondingsubpopulationsrapidlyadaptanddrivethegrowthofthewholepopulation,whereasii)forenvironmentsofshortduration(small)slowlyadaptingsubpopulationsremainclosetothestatethatwillbefitwhenoccursnexttime.Thiscausesaslightasymmetryofthebenefitdiagram(B)atlargeresponseratesandsmallvs.large.Thebenefitofheterogeneity,definedastheratioofheterogeneousandhomogeneouspopulationgrowthrates,ishighestwhentheresponserateiscomparabletotheenvironmentalrateofchange. https://doi.org/10.1371/journal.pone.0027033.g006Asameasureofbenefit,Figure6Bshowstheratioofthetime-averagedgrowthratesforaheterogeneousandahomogeneouspopulationinenvironmentsofdifferentdemand,startingwithenvironment.Herecorrespondstotheinverseoftheaverageresponse-time().Forconsistencewekeepthecoefficientofvariationconstantforall().Figure6Bshowsthatresponsetimevariabilityconsistentlyincreasesthepopulationfitness,inparticularwhentheaverageresponsetimeiscomparabletothecycleduration:clearly,whenthenmostcellsrespondmuchfasterthantheenvironmentchanges,hencemostcellsarequasi-instantaneouslyadaptedtoanewenvironmenttherebyrenderingtheeffectofvariabilitysmall.Ontheotherhand,ifcellsrespondmuchslowerthantherateofchangeoftheenvironment,thentheirstateisquasi-constantduringacycle,alsodecreasingtheeffectofvariability.Theslightasymmetryofthebenefitatsmallvs.large,isduetotheaforementionedeffectofslowlyrespondingsubpopulationswhentheenvironmentrapidlyreturnstoitspreviousstate(atsmall).Hence,atshortenvironmentaldurationsslower-than-averagerespondingsubpopulationsprovideabenefit,whereasatlong-lastingenvironmentalconditions,thebenefitoffastrespondingsubpopulationsoutweighsthecostoftheslowlyrespondingones. Forasingleenvironmentalcondition,e.g.,andsmallvariability,thisbenefitcanbeunderstoodstraightforwardly.Assumingthatthedurationofoneenvironmentalconditionislongenoughforallsubpopulationstoreachtheadaptedstatewemaywriteforthepopulationsizeattime(11) asfollowsfromEq.5.UsingEq.11fortheintegralinEq.10andanormaldistributionofresponsetimeswithintegrationlimitsfromto(applicableforsmall),weobtainfortheheterogeneouspopulationsizeattime(12)(13) wherewealsousedthewellknowngaussianintegral.Equation13showsthatresponsetimevariabilityalwaysprovidesabenefitafteranenvironmentalchangecomparedtoahomogeneouspopulationwhichhasthesameaverageresponsetime.ThispropertycanbeattributedtotheconvexdependenceofthepopulationsizeontheresponsetimeasfollowsfromJensen'sInequality.Inparticularweseethatthebenefitincreaseswiththemaladaptationcost,withthesteadystategrowthrate,andwiththevariability.Thisisaplausibleresultwhenconsideringthatthebenefitofrapidlyadaptingcellsincreasesthefasterthesecellscandivideoncetheyhaveadapted,andthatthenumberofrapidlyadaptingcellsincreaseswith. Inthesecondkindofheterogeneity,cellshaveidenticalresponserates,butnoisedrivesthemintodifferentstates.Whentheresponseissufficientlyfast(andintheabsenceofmultistability)itisreasonabletoassumethatmostcellssettleintheoptimumstate(i.e.,in)whereasafewcellsleakintothenearbystates().Wethereforeassumeanexponentialdistributionofstatesatthebeginningofacycle(whentheenvironmentswitchesfromto).BycarryingouttheintegrationinEq.10weobtainthetime-averagedgrowthrateofaheterogeneouspopulation(asourstatespaceislimitedtotheinterval,weonlyconsiderdistributionswithaprobability).InFigure7Awecompareittothenetgrowthrateofahomogeneouspopulationwhereallcellsstartin,asafunctionofthemaladaptationcostandthevariability().Thebenefitofstateheterogeneityincreaseswiththevariabilityandwiththemaladaptationcost,clearlybecausecellsthatareslightlypre-adaptedtothenewenvironmentprovideahigherbenefitwhenthemaladaptationcostislarge.Ontheotherhandwefoundthatforstate-variabilityrepresentsadisadvantagebecausethebenefitofcellsthatarepre-adaptedtoconditionisoutweighedbyacostwhichthesecellsrepresentiftheenvironmentrapidlychangesbacktocondition(notshown).Henceexpressionnoiseappearstoprovideabenefitonlyifdifferentenvironmentalconditionshavesimilardurations,butnotwhenoneenvironmentstronglyprevails.ForasingleenvironmentalconditionandwiththeintegralinEq.10canagainbecarriedoutanalytically,yielding(14) Download: PPTPowerPointslidePNGlargerimageTIFForiginalimageFigure7.Benefitandcostofstateheterogeneity.Benefitsandcostsaremeasuredbytheratioofheterogeneousandhomogeneouspopulationgrowthratesoveronecycle,foraresponsivepopulationin(A)andforaconstitutivepopulationin(B).Fortheresponsivestrategythebenefitofheterogeneityincreaseswiththemaladaptationcostandwiththevariability.Thefitnessofaconstitutivepopulation(B)whichiswelladaptedtoenvironmentalcycleswhereprevails()isreducedbyvariability.Onlywhenthepopulationissignificantlymaladaptedheterogeneityprovidesabenefit.Notethatbenefitvaluesin(B)areclippedat https://doi.org/10.1371/journal.pone.0027033.g007Asweareconsideringanexponentialdistributionofstates,wehave.Hence,forahomogeneouspopulation()thisexpressiondirectlyexplainstheincreasingbenefitatincreasingmaladaptationcostsandvariability,afteranenvironmentalchange.Notethatthebenefitdecreaseswithincreasingresponserates,becausethepopulationwillbenefitmorefromcellsthatareslightlypre-adaptedwhentheresponseisslowthanwhentheresponseisfast.Aslowlyrespondingpopulationmightthereforeincreaseitsfitnessbyincreasinggeneexpressionnoise.Wementionthattheresultsremainqualitativelysimilarwhenweassumeasymmetricdistributionaroundaninitialstate. Figure7Bshowstheratioofthetime-averagedgrowthratesofaconstitutive-heterogeneoustoaconstitutive-homogeneouspopulationasobtainedfromEq.10.Weassumedthattheconstitutivepopulationisoptimizedforgrowthinenvironmentalcycleswhereprevails,andhasanexponentialdistributionoverneighboringstates.Forthecasethatthehomogeneouspopulationisreasonablywelladapted(i.e.for),heterogeneityrepresentsasignificantcostbecauseasmallerfractionofthepopulationresidesintheoptimumstate(thisissimilartoaresponsivepopulationinanenvironmentwhereoneconditionstronglyprevails).Onlyifthepopulationissufficientlymaladapted(),diversificationcanincreasefitnessduetothepresenceofasmallwell-adaptedsubpopulation. Geneexpressionlevelscanevolvetoanoptimumwithinafewhundredgenerations[16].Theaboveresultsthereforeindicatethattheexpressionofaconstitutivegenewillbeselectedagainstnoise[39],[48]–[50].Ontheotherhand,wefindthataresponsivestrategycanbenefitboth,fromheterogeneousstatesandfromheterogeneousresponsetimes,inparticularwhenmaladaptationcostsarehighandwhenbothenvironmentaldurationsarecomparabletothepopulation-averagedresponsetime. DiscussionItisageneralbeliefthatrespondingtoanenvironmentalchangeisbetterthannotresponding.Itisnotaprioriclear,however,whetherrespondingisindeedthebeststrategyinarapidlychangingenvironment.Infact,manygenesarenotresponsivelyregulatedbutexpressedconstitutivelydespiteavaryingdemandforthegeneproduct.Inthisarticleweexplainedwhichconditionsselectforaconstitutiveoraresponsivegeneexpressionstrategyinatime-varyingenvironment,takingaccountofenvironmentalandinter-cellularnoise. Witharesponsivestrategyapopulationcanswitchbetweentwoadaptedphenotypes,whereeachoneconfersmaximalgrowthinoneenvironmentwhileminimizinggrowthintheother,cf.Figure1.Afteranenvironmentalchangetheresponsivepopulationismaladaptedandrequirestimeforthetransitionintotheadaptedstate,eventuallyreachingitbyatimewhentheenvironmentchangesonceagain.Withaconstitutive-passivestrategyapopulationcanevolutionarilytuneitsphenotypetoanoptimalintermediatelevel,whichononehandallowssuboptimal(intermediate)growthatalltimesinbothenvironments[16],andwhichontheotherhandbypassestheadaptationlag.Asafunctionofthemaladaptationcost,thetimescalesofenvironmentalchanges,andofthegeneticresponsewehavestudiedwhichistheoptimalconstitutiveexpression-levelandunderwhichconditionsitconfersfastergrowththanaresponsivelyregulatedexpression. Wefoundthattheoptimalconstitutivelevelinachangingenvironmentisdifferentfromtheaverageoptimalexpressionlevel(Figure3):whenthegrowthrateisaconvexfunctionoftheexpressionlevel,theoptimummaximizesgrowthinoneenvironmentwhileprovidingminimalgrowthintheother.Whenthegrowthrateisaconcavefunction,theoptimalconstitutivelevelisanintermediateone,providingintermediategrowthinbothenvironments.Interestingly,whetherconvexorconcave,theoptimumlevelisgenerallydifferentfromtheaveragedemandforthegeneproduct. Atlargemaladaptationcoststheconstitutivestrategyconfersnet-growthonlywhenoneoftheenvironmentalconditionsprevails,otherwiseafastrespondingstrategybecomesimperativetoachievenetgrowth.Aresponsivepopulationthatcannotrespondsufficientlyfast,however,lagsbehindtheenvironment:itsexpressionstateslowlyoscillatesaroundtheaverageddemandforthegeneproductanddoesnotreachtheoptimuminanyofthetwoenvironments(cf.Figure1C).Undertheseconditionsconstitutiveoptimalexpressionprovidesalargertime-averagedgrowthratethanresponsivelyregulatedexpression,cf.Figure4. Theresponsivevs.constitutiveregimesareseparatedbyafirstorderphase-transition.Thisindicatesthatafastgeneticresponsecannotevolvestartingfromconstitutiveexpressionviaaslowresponse,becauseitwouldhavetogothrougharegimeoflowerfitness.Thisconditionmaygiverisetoevolutionaryhysteresisasrecentlysuggestedfortheevolutionofstochasticswitching[24].Aninterestingquestionthatarises,ishowresponsivegeneexpressioncanevolvefromconstitutiveexpression. Previousstudies[6],[33]hadfoundthatconstitutiveexpressioncanonlybebetterthanresponsiveexpressionifthecostforsensingandregulatorymachineryishigh.Inotherwords,whenregulationcomes“forfree”thesestudiespredictthatregulationwillalwaysbeselectedfor.Instrikingcontrast,weneglectedthecostofregulationandstillfindthatconstitutiveexpressioncanbebetterthanadaptiveexpression.Thisresultisamereconsequenceofexplicitlytakingintoaccountthe(slow)adaptationdynamicsandtheintermediatestates,whichwereneglectedinpreviousstudies. Wefindthataresponsivestrategyhassignificantlylargergrowthratesinrandomenvironmentscomparedtoperiodicenvironmentswhenthetimescalesofthegeneticresponseandenvironmentalchangearecomparable,seeFigure5B.Asimilareffectwaspreviouslyobservedinamodelofstochasticswitching[23],thereforeitwouldbeveryinterestingtoverifythispredictionexperimentally.Furthermorewefindthatinachangingenvironmentaresponsivestrategycanbenefitfrominter-cellularnoise,inparticularwhenenvironmentaldurationsarecomparabletothepopulationaveragedresponsetime,whereasthefitnessoftheconstitutivestrategyisimpaired,cf.Figure6and7. Thus,ourmainconclusionsare:i)thataconstitutivegene-expressionstrategyisbetterthanaresponsivestrategywhentheenvironmentsareasymmetricorwhenaresponseisnotsufficientlyfastandii)thatconstitutivelyexpressedstatesareselectedagainstnoisewhereasgenesthatrespondtoenvironmentalchangesmaybenefitfromnoise. Recentanalysisofyeasthigh-throughputdataindeedconfirmthisresult[39],[48]–[50]:geneswhichareconstitutivelyexpressedandunderanalmostconstantdemand(commonlyreferredtoashousekeepinggenes)havebelow-averagelevelsofgeneexpressionnoise,theproteasomehavingtheleast[39].Thisisinagreementwithothertheoreticalworksongeneexpressioninaconstantenvironment[17],[35],[35,51].Tightlyregulatedgenes,whichrespondtoenvironmentalperturbations,however,showsystematicallyhigherlevelsofgeneexpressionnoise.Thisisparticularlystrikingforstressresistancegenesandfortheproductsofmetabolicsystemsintherepressedstate[39],[42],[46],[49]–[52].Inprinciplethenoiselevelscanbetunedbythecell[36];thereforeitwouldbeinterestingtoexperimentallyverifyacorrelationbetweengeneexpressionnoise,generesponsetime,andthefrequencyofdemandforageneproduct.Morespecificallythismaybeachievedinalaboratoryevolutionexperimentwhereanoisygenethatrespondstoenvironmentalperturbationsisputunderconstantdemand.Accordingtoouranalysisevolutionwillthenselectagainstgeneexpressionnoise. Complementingpreviousworksonphenotypicswitching[6],[23]–[25]ourresultsallowtodividetheenvironmentalparameterspaceintothreeregimesofoptimalgrowthstrategies:a)Whenpopulationscanrapidlyswitchbetweenadaptedstatestheresponsiveswitchingstrategyisthebest.b)Whenadaptationisslowandenvironmentsaresymmetric,stochasticswitchingispreferredoverresponsiveswitching[23]–[25].c)Whenaresponseisslowandtheenvironmentisasymmetric,constitutiveexpressionisbetterthanresponsiveswitching(thisstudy),whereasstochasticswitchingcanbeworse[24],[25]. Ourpredictionsonoptimalityofconstitutiveexpressioncanbeverifiedexperimentallyasfollows.Inaconstantlactoseenvironmentwithsaturatinginducerconcentrations,theexpressionlevelofthelac-operonwasshowntoadapttoanoptimumwithinafewhundredgenerations[16].Usingasimilarprotocoltheconstitutivemutants,or,canbeevolvedinachangingenvironmentwherethedemandforLacproteinsoscillatesintime.Ourmethodpredictsthe(optimal)expressionlevelstowhichaconstitutivelyexpressingstrainwillevolveasafunctionoftheexpressiondemand. Recentlydevelopedpromotersallowforagradedinductionofvarioussugarsystems[53],[54].Byvaryingtheinducerconcentrationthesepromoterscanbeusedtomeasurethegrowth-ratedependenceontheexpressionlevelofdifferentgenes(i.e.,thecost-benefitrelationship)andtodeterminetheoptimalconstitutiveexpressionlevelsatdifferentdemandsforthegeneproduct.Itwouldalsobeveryinterestingtousethesepromoterstocharacterizealargesetofcost-benefitfunctions:doallfunctionsfallintoacertainclass?Aretherethreshold-likecost-benefitfunctions?Classifyingandunderstandingtheshapeofthesefunctionsmayprovideprofoundinsightsintocellularexpressionregulation. Usingmicrofluidicdevices[55]thetime-averagedgrowthratesinarapidlychangingenvironmentcanbemeasured[22,34,allowingcomparisontoourconstitutivevs.responsivestrategydiagrams,seeFigure4B.ForE.coli,usingtheexperimentallydeterminedcost-benefitdataofthelac-operon(notexpressingLacZwhenlactoseisavailable:,expressingLacZwhenlactoseisunavailable,,at[16])ouranalysispredictsthatconstitutivelac-expressionwillhaveagrowthrateadvantagewhentheexpressiondemandliesaboveatanenvironmentalcycleduration(whereistheresponserateofthelac-operon).Whenthecycledurationislonger,e.g.,thentheresponsivestrategyhassufficienttimetofullyadaptandtheintermediate-constitutivestrategywillonlyhavehigherfitnesswhenthedemandforlac-expressionalsoincreasesabove.Togetherthisindicatesthatthelac-operonwasoptimizedforrarelactoseavailabilitywithlongcycledurations,consistentwithpreviousworks[16],[17].Indeed,inanaturalsettingE.colifindslactoseonlyduringhourswhiletraversingtheprimarymammalianintestine[1],whereaslactoseisunavailableinmostotherhabitats(colon,soil,water).Assumingacycleduration(hencethedemand),ouranalysisconsistentlypredictsthatregulated-inductionofLac-proteinsconfershigherfitnessthanoptimalconstitutiveexpression. Finally,acomparisonofregulatorystrategiesacrossdifferentspeciesthatevolvedindifferenthabitatswouldprovidefurtherinsightintotheinterplayofenvironmentaldemandfrequencyandtherequirementsfortheregulationofgenes[1].Specifically,constitutivegeneexpressionlevelsandgeneinductionpatternsmaydiffersignificantlybetweenthewildtypeS.Cerevisiaepopulations,andpopulationswhichwereusedovermanygenerationsinindustrialfermenters,e.g.,breweries. Inthispaperwehavestudiedoptimalgeneexpressionstrategiesinarapidlychangingenvironment.Weanalyzedtheinterplaybetweenthetimescalesofgeneticresponseandthedemandforaphenotype,themaladaptationcosts,andthefitness.Someofourpredictionsagreewithexperimentalobservations,andwesuggesttheexperimentsneededtoverifyothers.Webelievethiswillstimulatefurtherexperimentalworkand–inlinewithourpredictions–deepenourunderstandingofmicrobialgeneexpressionstrategies. Acknowledgments TheauthorwouldliketothankMiguelRubi,JavierBucetaandMarcWeberforhelpfuldiscussionsandreadingthemanuscript. AuthorContributionsConceivedanddesignedtheexperiments:NG.Performedtheexperiments:NG.Analyzedthedata:NG.Contributedreagents/materials/analysistools:NG.Wrotethepaper:NG.References1. SavageauMA(1977)Designofmolecularcontrolmechanismsandthedemandforgeneexpression.ProcNatlAcadSciUSA74:5647–5651. ViewArticle GoogleScholar 2. KussellE,KishonyR,BalabanNQ,LeiblerS(2005)Bacterialpersistence:Amodelofsurvivalinchangingenvironments.Genetics169:1807–1814. ViewArticle GoogleScholar 3. BalabanNQ,MerrinJ,ChaitR,KowalikL,LeiblerS(2004)Bacterialpersistenceasaphenotypicswitch.Science305:1622–1625. ViewArticle GoogleScholar 4. MitchellA,RomanoGH,GroismanB,YonaA,DekelE,etal.(2009)Adaptivepredictionofenvironmentalchangesbymicroorganisms.Nature460:220–224. ViewArticle GoogleScholar 5. GefenO,GabayC,MumcuogluM,EngelG,BalabanNQ(2008)Single-cellproteininductiondynamicsrevealsaperiodofvulnerabilitytoantibioticsinpersisterbacteria.ProcNatlAcadSciUSA105:6145–6149. ViewArticle GoogleScholar 6. KussellE,LeiblerS(2005)Phenotypicdiversity,populationgrowth,andinformationinfluctuatingenvironments.Science309:2075–2078. ViewArticle GoogleScholar 7. AlbyK,BennettRJ(2009)Stressinducedphenotypicswitchingincandidaalbicans.MolBiolCell14:3178–3191. ViewArticle GoogleScholar 8. ChenD,TooneWM,MataJ,LyneR,BurnsG,etal.(2003)Globaltranscriptionalresponsesoffissionyeasttoenvironmentalstress.MolBiolCell14:214–229. ViewArticle GoogleScholar 9. FritzG,KollerC,BurdackK,HaneburgerI,TetschL,etal.(2009)Inductionkineticsofaconditionalphstressresponsesysteminescherichiacoli.JMolBiol393:272–286. ViewArticle GoogleScholar 10. KjellebergS,AlbertsonN,Fl¨ardhK,HolmquistL,JouperJaanA,etal.(1993)Howdonondifferentiatingbacteriaadapttostarvation?AVanLeeuwJMicrob63:333–341. ViewArticle GoogleScholar 11. NystromT,AlbertsonN,FladhK,KjellebergS(1990)PhysiologicalandmolecularadaptationtostarvationandrecoveryfromstarvationbythemarineVibrioS14.FEMSMicrobiology74:129–140. ViewArticle GoogleScholar 12. GefenO,BalabanNQ(2009)Theimportanceofbeingpersistent:heterogeneityofbacterialpopulationsunderantibioticstress.FEMSMicrobiolRev33:704–717. ViewArticle GoogleScholar 13. RotemE,LoingerA,RoninI,Levin-ReismanI,ShoreshCGN,etal.(2010)Regulationofphenotypicvariabilitybyatreshold-basedmechanismunderliesbacterialpersistence.ProcNatlAcadSciUSA107:12541–12546. ViewArticle GoogleScholar 14. GeiselN,VilarJM,RubiJM(2011)Optimalresting-growthstrategiesofmicrobialpopulationsinfluctuatingenvironments.PLoSONE6:e18622. ViewArticle GoogleScholar 15. KochAL(1983)Theproteinburdenoflacoperonproducts.JMolEvol19:455–462. ViewArticle GoogleScholar 16. DekelE,AlonU(2005)Optimalityandevolutionarytuningoftheexpressionlevelofaprotein.Nature436:588–592. ViewArticle GoogleScholar 17. KaliskyT,DekelE,AlonU(2007)Cost-benefittheoryandoptimaldesignofgeneregulationfunctions.PhysBiol4:229–245. ViewArticle GoogleScholar 18. LangGI,MurrayAW,BotsteinD(2008)Thecostofgeneexpressionunderliesafitnesstrade-offinyeast.ProcNatlAcadSciUSA106:5755–5760. ViewArticle GoogleScholar 19. PtashneM,GannA(2001)GenesandSignals.ColdSpringHarborLaboratoryPress,1stedition.20. VilarJM,GuetCC,LeiblerS(2003)Modelingnetworkdynamics:Thelacoperon,acasestudy.JCellBiol161:471–476. ViewArticle GoogleScholar 21. LachmannM,JablonkaE(1995)Theinheritanceofphenotypes:anadaptationtofluctuatingenvironments.JTheorBiol181:1–9. ViewArticle GoogleScholar 22. AcarM,MettetalJT,vanOudenaardenA(2008)Stochasticswitchingasasurvivalstrategyinfluctuatingenvironments.NatGenet40:471–475. ViewArticle GoogleScholar 23. ThattaiM,vanOudenaardenA(2004)Stochasticgeneexpressioninfluctuatingenvironments.Genetics167:523–530. ViewArticle GoogleScholar 24. GaalB,PitchfordJW,WoodAJ(2010)Exactresultsfortheevolutionofstochasticswitchinginvariableasymmetricenvironments.Genetics184:1113–1119. ViewArticle GoogleScholar 25. SalatheM,VanCleveJ,FeldmanMW(2009)Evolutionofstochasticswitchingratesinasymmetricfitnesslandscapes.Genetics182:1159–1164. ViewArticle GoogleScholar 26. WolfDM,ArkinAP(2002)Fifteenminutesoffimcontroloftype1piliexpressionine.coli.Omics6:91–114. ViewArticle GoogleScholar 27. BlaauwM,MaartenLH,vanHaastertPJ(2000)Efficientcontrolofgeneexpressionbyatetracycline-dependenttransactivatorinsingledictyosteliumdiscoideumcells.InternationalJournalonGenes,GenomesandEvolution252:71–82. ViewArticle GoogleScholar 28. NorstromK,SykesR(1974)Inductionkineticsofbeta-lactamasebiosynthesisinpseudomonasaeruginosa.AntimicrobAgentsCh6:734–740. ViewArticle GoogleScholar 29. GhoshS,SurekaK,GhoshB,BoseI,BasuJ,etal.(2011)Phenotypicheterogeneityinmycobacterialstringentresponse.BMCSystBiol5:18. ViewArticle GoogleScholar 30. RosenfeldN,AlonU(2003)Responsedelaysandthestructureoftranscriptionnetworks.JMolBiol329:645–654. ViewArticle GoogleScholar 31. ManganS,ItzkovitzS,ZaslaverA,AlonU(2006)Theincoherentfeed-forwardloopacceleratestheresponse-timeofthegal-systemofescherichiacoli.JMolBiol356:1073–1081. ViewArticle GoogleScholar 32. MitchellA,PilpelY(2011)Amathematicalmodelforadaptivepredictionofenvironmentalchangesbymicroorganisms.ProcNatlAcadSciUSA11: ViewArticle GoogleScholar 33. AlonU(2007)Anintroductiontosystemsbiology.ChapmanandHall-CRC1: ViewArticle GoogleScholar 34. BennettMR,LeePangW,OstroffNA,BaumgartnerBL,NayakS,etal.(2008)Metabolicgeneregulationinadynamicallychangingenvironment.Nature454:1119–1122. ViewArticle GoogleScholar 35. WangZ,ZhangJ(2011)Impactofgeneexpressionnoiseonorganismalfitnessandtheefficacyofnaturalselection.ProcNatlAcadSciUSA16:67–76. ViewArticle GoogleScholar 36. OzbudakEM,ThattaiM,KurtserI,GrossmanAD,vanOudenaardenA(2002)Regulationofnoiseintheexpressionofasinglegene.NatGenet31:69–73. ViewArticle GoogleScholar 37. ElowitzMB,LevineA,SiggiaE,SwainP(2002)Stochasticgeneexpressioninasinglecell.Science16:1183–1186. ViewArticle GoogleScholar 38. RaserJM,O'SheaEK(2005)Noiseingeneexpression:origins,consequences,andcontrol.Science309:2010–2013. ViewArticle GoogleScholar 39. Bar-EvenA,PaulssonJ,MaheshriN,CarmiM,O'SheaE,etal.(2006)Noiseinproteinexpressionscaleswithnaturalproteinabundance.NatGenet38:636–643. ViewArticle GoogleScholar 40. YuJ,XiaoJ,RenX,LaoK,XieXS(2006)Probinggeneexpressioninlivecells,oneproteinmoleculeatatime.Science311:1600–1603. ViewArticle GoogleScholar 41. PolzMF,HuntDE,PreheimSP,WeinreichDM(2006)Patternsandmechanismsofgeneticandphenotypicdifferentiationinmarinemicrobes.PhilosTRSocB361:2009–2021. ViewArticle GoogleScholar 42. MegerleJA,FritzG,GerlandU,JungK,RädlerJO(2008)Timinganddynamicsofsinglecellgeneexpressioninthearabinoseutilizationsystem.BiophysicalJournal95:2103–2115. ViewArticle GoogleScholar 43. Levin-ReismannI,GefenO,FridmanO,RoninI,ShwaD,etal.(2010)Automatedimagingwithscanlagrevealspreviouslyundetectablebacterialgrowthphenotypes.NatMethods7:737–739. ViewArticle GoogleScholar 44. ZhangXS,HillWG(2005)Evolutionoftheenvironmentalcomponentofthephenotypicvariance:Stabilizingselectioninchangingenvironmentsandthecostofhomogeneity.Evolution59:1237–1244. ViewArticle GoogleScholar 45. BlakeWJ,BalazsiG,KohanskiMA,IsaacsFJ,MurphyKF,etal.(2006)Phenotypicconsequencesofpromoter-mediatedtranscriptionalnoise.MolCell24:853–865. ViewArticle GoogleScholar 46. Lopez-MauryL,MargueratS,BählerJ(2008)Tuninggeneexpressiontochangingenvironments:fromrapidresponsestoevolutionaryadaptation.NatRevGenet9:583–593. ViewArticle GoogleScholar 47. CagatayT,TurcotteM,ElowitzMB,Garcia-OjalvoJ,SuelGM(2009)Architecture-dependentnoisediscriminatesfunctionallyanalogousdifferentiationcircuits.Cell139:512–522. ViewArticle GoogleScholar 48. FraserHB,HirshAE,GiaeverG,KummJ,EisenMB(2004)Noiseminimizationineukaryoticgeneexpression.PLoSBiol2:e137. ViewArticle GoogleScholar 49. NewmanJ,GhaemmaghamiS,IhmelsJ,BreslowD,NobleM,etal.(2006)Single-cellproteomicanalysisofs.cerevisiaerevealsthearchitectureofbiologicalnoise.Nature441:840–846. ViewArticle GoogleScholar 50. LehnerB(2008)Selectiontominimisenoiseinlivingsystemsanditsimplicationsfortheevolutionofgeneexpression.MolSystBiol4:170. ViewArticle GoogleScholar 51. Tänase-NicolaS,tenWoldePR(2008)Regulatorycontrolandthecostsandbenefitsofbiochemicalnoise.PLoSComputBiol4:e1000125. ViewArticle GoogleScholar 52. CaiL,FriedmanN,XieS(2005)Stochasticproteinexpressioninindividualcellsatthesinglemoleculelevel.Nature440:358–362. ViewArticle GoogleScholar 53. KhlebnikovA,RisaO,SkaugT,CarrierTA,KeaslingJD(2000)Regulatablearabinose-induciblegeneexpressionsystemwithconsistentcontrolinallcellsofaculture.JBacteriol182:7029–7034. ViewArticle GoogleScholar 54. Morgan-KissRM,WadlerC,CronanJE(2002)Long-termandhomogeneousregulationoftheescherichiacoliarabadpromoterbyuseofalactosetransporterofrelaxedspecificity.ProcNatlAcadSciUSA99:7373–7377. ViewArticle GoogleScholar 55. BennettMR,HastyJ(2009)Microfluidicdevicesformeasuringgenenetworkdynamicsinsinglecells.NatRevGenet10:628–638. ViewArticle GoogleScholar DownloadPDF Citation XML Print Printarticle Reprints Share Reddit Facebook LinkedIn Mendeley Twitter Email Advertisement SubjectAreas? FormoreinformationaboutPLOSSubjectAreas,click here. Wewantyourfeedback.DotheseSubjectAreasmakesenseforthisarticle?ClickthetargetnexttotheincorrectSubjectAreaandletusknow.Thanksforyourhelp! Geneexpression IstheSubjectArea"Geneexpression"applicabletothisarticle? Yes No Thanksforyourfeedback. Phenotypes IstheSubjectArea"Phenotypes"applicabletothisarticle? Yes No Thanksforyourfeedback. Lactose IstheSubjectArea"Lactose"applicabletothisarticle? Yes No Thanksforyourfeedback. Evolutionarygenetics IstheSubjectArea"Evolutionarygenetics"applicabletothisarticle? Yes No Thanksforyourfeedback. Generegulation IstheSubjectArea"Generegulation"applicabletothisarticle? Yes No Thanksforyourfeedback. Genetics IstheSubjectArea"Genetics"applicabletothisarticle? Yes No Thanksforyourfeedback. Populationdynamics IstheSubjectArea"Populationdynamics"applicabletothisarticle? Yes No Thanksforyourfeedback. Fungalevolution IstheSubjectArea"Fungalevolution"applicabletothisarticle? Yes No Thanksforyourfeedback.
延伸文章資訊
- 1Constitutive versus regulated gene expression - ResearchGate
Download scientific diagram | Constitutive versus regulated gene expression from publication: Usi...
- 2Constitutive versus Responsive Gene Expression Strategies ...
We find that the optimal constitutive expression level depends on how the costs and benefits incr...
- 3Gene Expression and Regulation | Learn Science at Scitable
Some genes are constitutive, or always "on," regardless of environmental conditions. Such genes a...
- 4Constitutive Transcription - Synopsis - Byju's
Constitutive genes are constantly expressed in most cells and are not subject to regulation. The ...
- 5Regulation of constitutive gene expression through ... - PubMed
Regulation of constitutive gene expression through interactions of Sp1 protein with the nuclear a...