Acibenzolar-S-methyl防治不結球白菜病害之應用與可能抗病 ...
文章推薦指數: 80 %
... 防禦反應而達到防治病害之效,此現象稱為誘導性抗病(induced resistance)。
... 於種子浸泡ASM 防治不結球白菜苗立枯病之試驗中,僅有以10 mg/L ASM 處理三鳳2號 ...
資料載入處理中...
跳到主要內容
臺灣博碩士論文加值系統
:::
網站導覽|
首頁|
關於本站|
聯絡我們|
國圖首頁|
常見問題|
操作說明
English
|FB專頁
|Mobile
免費會員
登入|
註冊
功能切換導覽列
(165.22.106.144)您好!臺灣時間:2022/10/2203:57
字體大小:
:::
詳目顯示
recordfocus
第1筆/
共1筆
/1頁
論文基本資料
摘要
外文摘要
目次
參考文獻
紙本論文
QRCode
本論文永久網址: 複製永久網址Twitter研究生:許翠蘭研究生(外文):Tsui-LanHsu論文名稱:Acibenzolar-S-methyl防治不結球白菜病害之應用與可能抗病機制之探討論文名稱(外文):Applicationofacibenzolar-S-methylanditsresistancemechanismincontrollingdiseasesofPak-choi指導教授:鍾文鑫口試委員:鍾文全、張碧芳口試日期:2011-07-13學位類別:碩士校院名稱:國立中興大學系所名稱:植物病理學系所學門:農業科學學門學類:植物保護學類論文種類:學術論文論文出版年:2011畢業學年度:99語文別:中文論文頁數:63中文關鍵詞:acibenzolar-S-methyl(ASM)、不結球白菜、誘導性抗病、藥害、機制外文關鍵詞:acibenzolar-S-methyl(ASM)、Pak-choi、inducedresistance、phytotoxicity、mechanism相關次數:
被引用:1點閱:408評分:下載:0書目收藏:0
Acibenzolar-S-methyl(ASM)係苯并噻二唑(benzothiadiazole)的衍生物,其透過植物體內的水楊酸訊號傳遞路徑,誘導植物產生防禦反應而達到防治病害之效,此現象稱為誘導性抗病(inducedresistance)。
本研究目的為探討ASM應用在不結球白菜上是否會造成生理傷害、能否防治不結球白菜炭疽病(anthracnose)和苗立枯病(damping-off)、及ASM誘導抗病之可能作用機制。
以葉面噴灑和種子浸泡2種方式處理1、10和100mg/LASM,觀察對王冠和三鳳2號品種的生長影響。
結果顯示施用高濃度(100mg/L)ASM時會引起植株鮮重減少、矮化或葉片畸形等藥害(phytotoxicity);而種子方面,浸泡高濃度ASM的時間越久,則越容易引起種子發芽率降低或幼苗生長勢較差等徵狀。
在防治炭疽病試驗中,於接種病原菌前預先處理1和10mg/LASM,經統計分析其罹病度後得知,於接種前1天施用1與10mg/LASM之防治效果可達80%以上,而接種前4天內皆為有效防治之施藥時間點,防治效果可超過50%,其中預先處理10mg/LASM之防治效果與百克敏和亞托敏的防治效果相同。
於種子浸泡ASM防治不結球白菜苗立枯病之試驗中,僅有以10mg/LASM處理三鳳2號品種種子18小時以上能防治立枯病,然此種處理條件亦會對幼苗生長造成影響,對植株生長影響甚大,顯示ASM適合以種子浸泡之方式處理不結球白菜。
本試驗分析不結球白菜抗病相關之酵素,結果得知王冠品種之超氧化物歧化酶(superoxidasedismutase,SOD)活性於處理1mg/LASM後24小時達最高,而三鳳2號品種之SOD活性於處理10mg/LASM後24小時達最高;而接種炭疽病菌後,王冠品種的活性皆明顯高於對照組,三鳳2號品種的活性則於12小時後明顯高於對照組0.7倍。
然於接種前3小時施用1與10mg/LASM之王冠品種於6小時起SOD活性開始上升,在24小時後活性增加0.5與0.7倍;三鳳2號品種分別預處理1與10mg/LASM之後的SOD活性於3和6小時後開始明顯增加,24小時後活性增加0.3與0.4倍。
於過氧化氫酶(catalase,CAT)之活性測定,顯示處理10mg/LASM的王冠品種於6小時活性會降低0.6倍,但隨後又回復至與對照組無明顯差異,然三鳳2號品種於施用各處理所測得之CAT活性皆無明顯差異。
另王冠品種於接種病原菌後3與18小時,CAT活性明顯降低0.8與0.5倍;而三鳳2號品種則於接種後6小時,活性明顯減少0.8倍。
若接種前3小時預處理10mg/LASM之王冠品種,CAT活性於6小時後明顯降低0.8倍,而三鳳2號品種預處理1mg/LASM之活性,於12小時後明顯降低0.7倍。
過氧化酵素(peroxidase,POD)活性測定指出,處理1mg/LASM後王冠品種之POD於第5天活性增加達1.4倍,處理10與100mg/LASM後POD於第4天活性達到最高,分別較對照組增加1.9與4.2倍;三鳳2號品種處理1與10mg/LASM後之POD活性於1天後開始增加,而100mg/LASM處理之植株於4天後開始增加,且所有處理組之活性皆可持續至第7天,活性分別較對照組增加0.5、1.0、0.9倍。
此兩種品種接種病原菌後,王冠品種的POD活性於1天後開始上升,於第6天時明顯增加0.9倍;而三鳳2號品種之活性則於第6天才明顯增加0.3倍。
王冠品種預處理1mg/LASM之POD活性於3天後開始顯著增加,第6天明顯增加達0.7倍;而預處理10mg/LASM之活性於3小時內立刻被活化,於第3天明顯增加達0.6倍;另預處理100mg/LASM之活性於1天起顯著增加,則於第5天明顯增加達1.7倍。
三鳳2號品種預處理1mg/LASM之POD活性與對照組無明顯差異;而預處理10mg/LASM後之活性於第3天明顯增加0.7倍;另預處理100mg/LASM植株之POD活性於第6天後明顯增加0.4倍。
於苯丙胺酸氨裂解酵素(phenylalanineammonialyase,PAL)之活性測定,結果顯示王冠品種處理1與10mg/LASM後,PAL活性於第3天明顯增加0.1與0.2倍;100mg/LASM處理之植株體內活性於5天後明顯增加,於第7天活性增加達0.2倍。
而三鳳2號品種施用1、10、100mg/LASM後7天,PAL活性分別明顯增加0.4、0.4、0.6倍。
於接種病原菌後,王冠品種於6天後,PAL活性明顯增加0.2倍;而三鳳2號品種的活性無任何改變。
此外,王冠品種在接種前預先處理1mg/LASM之PAL活性無任何改變,而預處理10與100mg/LASM後,PAL活性於第6天皆明顯增加0.2倍。
三鳳2號品種預處理1mg/LASM後PAL活性無任何改變,而預處理10mg/LASM植株的活性,則於6天後明顯增加0.3倍;另預處理100mg/LASM後的PAL活性於3小時與第4天顯著增加0.4與0.2倍。
前人研究指出,植物抗病性的產生除上述與抗病有關酵素外,亦包含病程相關蛋白質(pathogenesis-relatedproteins,PRprotein)和總酚化物(totalphenoliccompounds)等,未來將進一步分析其他與抗病性產生有關之機制。
Acibenzolar-S-methyl(ASM)isoneofthederivativesofbenzothiadiazole.Itcaninduceplantdefenseresponsestocontroldiseasesbysalicylicacidsignalingpathway.Thus,ASMcanbeanalternativecontrolagentinprotectingcrops.Inthisstudy,theobjectivesare1)estimationofphytotoxicitycausedbyASMonPak-choi(BrassicacampestrisL.ChineseGroup),2)efficacyofcontrollinganthracnoseanddamping-offofPak-choi,3)possibilityofresistantmechanismsinducingbyASMinPak-choi.Basedonleafsprayingandseedsoaking,twoPak-choicultivarsofWangGuanandSanFengNo.2weretreatedwith1,10,and100mg/LASM,respectively.TheleafsprayingresultsindicatedthatPak-choicouldshowesomeabnormalsymptomscausedby100mg/LASM,includingfreshweightreduction,dwarfordeformationofleaveshape.Forseedtreatment,therateofseedgerminationwerereduced,orevengerminationtheseedlingdidnotshowhealthyunder10or100mg/LASM.Comparingtheefficacyoftwocultivarspre-treatedwith1and10mg/LASM1dayor4daybeforeinoculated105conidia/mlC.higginsianumPA01couldinduceresistanceandreducemorethan80%or50%diseaseseverity,respectively.Consequently,thetwocultivarspre-treatedwith10mg/LASMshowedsameefficacyastreatedfungicidesofpyraclostrobinandazoxystrobin.Theotherside,onlySanFengNo.2cultivarshowedgoodefficacytoagaintdamping-offcausedbyRhizoctoniasolaniwhentheseedssoakedwith10mg/LASMfor18hrs.However,theseedingsoftwocultivarsshowedabnormalsymptomsaftertreatedwith10mg/LASM.Thus,seedtreatmentmightnotgoodmethodforcontrollingdamping-off.ForcarringouttheresistancemechanismofPak-choi,severalenzymescorrespondedwithcropsresistancewereanalyzed,includingsuperoxidasedismutase(SOD),catalase(CAT),peroxidase(POD)andphenylalanineammonialyase(PAL).TheactivityofSODinWangGuancultivarwashighestat24hrsaftertreatedwith1mg/LASM,however,theactivityofSODinSanFengNo.2cultivarwashighestat24hrsaftertreatedwith10mg/LASM.TheactivitiesofSODinWangGuancultivarwere0.6~0.8timeshigh;meanwhile,theactivityofSODinSanFengNo.2cultivarwas0.7timeshighat12hrsafterinoculatedwithC.higginsianumPA01.TheactivitiesofSODinWangGuancultivarwere0.7and0.5timeshighat24hrs,andtheactivitiesofSODinSanFengNo.2cultivarwere0.3and0.4highat24hrsafterpre-treatedwith1and10mg/LASM.IntheactivityofCAT,theWangGuancultivarwasreduced0.6timeshighat6hrsaftertreated10mg/LASMandsubsequentlyreturnedtonormallevel.Moreover,theactivityofCATinSanFengNo.2cultivardidnotshowsignificantdifferenceaftertreatedwithASM.Afterinoculation,theactivitiesofCATinWangGuancultivarwerereduced0.8and0.5timesat3and18hrsandtheactivityofCATinSanFengNo.2cultivarwasreduced0.8timesat6hrs.Theotherside,theactivityofCATinWangGuancultivarwasreduced0.8timesat6hrsafterpre-treatedwith10mg/LASM,however,theactivityofCATinSanFengNo.2cultivarwasreduced0.7timesat12hrsafterpre-treatedwith1mg/LASM.ThePODtestindicatedthattheactivityofPODinWangGuancultivarwasincreasedaround1.4timeshighat5daysaftertreated1mg/LASM,andthePODactivitieswere1.9and4.2timeshighat4daysaftertreated10and100mg/LASM,respectively.Meanwhile,theactivityofPODinSanFengNo.2cultivarwasincreasedat1dayaftertreatedwith1and10mg/L,andtheactivityincreasedat4daysafterwith100mg/L.Inthistest,theactivitiesofPODinthetwocultivarswereinducedandtheactivitiescouldbepersistedfor7days.ComparingthePODactivitieswithoutinoculation,thePODactivitiesinWangGuancultivarandSanFengNo.2cultivarwereincreased0.9and0.3timesat6daysafterinoculation.Moreover,thePODactivitiesofWangGuancultivarwerehighestat6days,3daysand5daysafterpre-treatedwith1,10,and100mg/LASM,respectively.However,theactivityofPODinSanFengNo.2cultivardidnotshowsignificantdifferenceafterpre-treatedwith1mg/LASM.TheactivityofPODinSanFengNo.2cultivarwasincreased0.7timesat3daysafterpre-treatedwith10mg/LASM,andtheactivityofPODinSanFengNo.2cultivarwasincreased0.4timesat6daysafterpre-treatedwith100mg/LASM.FortheactivityofPALinPak-choi,theWangGuancultivarwasincreasedsignificantly0.1and0.2timeshighat3daysaftertreatedwith1and10mg/LASM,andthePALactivitywasincreasedsignificantlyat5daysandincreased0.2timeshighat7daysaftertreatedwith100mg/LASM.Theothersides,theactivitiesofPALinSanFengNo.2wereincreased0.4,0.4,and0.6timeshighat7daysaftertreatedwith1,10,and100mg/LASM,respectively.TheactivityofPALinWangGuancultivarwasincreased0.2timesat6days,however,theactivityofPALinSanFengNo.2cultivardidnotshowsignificantdifferenceafterinoculating.TheactivityofPALinWangGuancultivardidnotshowsignificantdifferenceafterpre-treatedwith1mg/LASM,however,theactivitiesofPALinWangGuancultivarwerebothincreased0.2timesat6daysafterpre-treatedwith10and100mg/LASM.TheactivityofPALinSanFengNo.2cultivardidnotshowsignificantdifferenceafterpre-treatedwith1mg/LASM,however,theactivityofPALinSanFengNo.2cultivarwasincreased0.3timesat6daysafterpre-treatedwith10mg/LASM.Moreover,theactivitiesofPALinSanFengNo.2wereincreased0.4and0.2timesat3hrsand4daysafterpre-treatedwith100mg/LASM.Inthisstudy,theotherdefenseresponsesofcropswerenotexamined,includingpathogenesis-related(PR)proteinsorcontentoftotalphenoliccompounds.Theseresistancemechanismswillbecarriedoutinfuture.
中文摘要i英文摘要iv目次vii前言1材料與方法4一、供試植物4二、供試菌株4三、Acibenzolar-S-methyl(ASM)配製4四、ASM對病原菌菌絲生長之影響4五、ASM對不結球白菜生長與發芽之影響5六、ASM防治不結球白菜炭疽病之應用5(一)白菜炭疽病接種源之製備與接種5(二)防治不結球白菜炭疽病之溫室試驗評估61.ASM防治白菜炭疽病之評估62.ASM與不同作用機制之殺菌劑防治白菜炭疽病之比較6七、ASM防治不結球白菜幼苗立枯病之應用6(一)白菜幼苗立枯病接種源之製備6(二)浸泡ASM對防治不結球白菜幼苗立枯病之評估7八、酵素活性測定7(一)酵素測定材料取樣7(二)超氧化物歧化酶(superoxidasedismutase,SOD)之活性測定8(三)過氧化氫酶(catalase,CAT)之活性測定8(四)過氧化酵素(peroxidase,POD)之活性測定9(五)苯丙胺酸氨裂解酵素(phenylalanineammonialyase,PAL)之活性測定9九、統計分析10結果11一、ASM對病原菌菌絲生長之影響11二、施用ASM對不結球白菜生長之影響11三、防治不結球白菜炭疽病之溫室試驗評估12(一)ASM防治白菜炭疽病之評估12(二)比較ASM與不同作用機制之殺菌劑防治白菜炭疽病的效果13三、ASM防治不結球白菜幼苗立枯病之應用13四、酵素活性測定14(一)超氧化物歧化酶(superoxidasedismutase,SOD)之活性測定14(二)過氧化氫酶(catalase,CAT)之活性測定14(三)過氧化酵素(peroxidase,POD)之活性測定15(四)苯丙胺酸氨裂解酵素(phenylalanineammonialyase,PAL)之活性測定16討論18參考文獻23表目次表一、不同濃度ASM對ColletotrichumhigginsianumPA01與RhizoctoniasolaniN-1菌絲生長之影響28表二、施用不同濃度與次數之ASM對王冠與三鳳2號品種之生長影響29表三、浸泡不同濃度ASM與不同時間浸泡對王冠和三鳳2號種子發芽率之影響30表四、不同時間下預先處理不同濃度ASM對王冠與三鳳2號炭疽病之防治效果31表五、比較ASM與其他殺菌劑對不結球白菜炭疽病之防治效果32表六、王冠和三鳳2號種子以不同濃度ASM浸泡不同時間後對幼苗立枯病之防治效果33表七、王冠和三鳳2號品種植株處理不同濃度ASM後,24小時內之超氧化物歧化酶(superoxidasedismutase,SOD)活性的變化34表八、王冠與三鳳2號品種植株處理不同濃度ASM後,再接種炭疽病菌C.higginsianumPA01,24小時內之超氧化物歧化酶(SOD)活性的變化35表九、王冠與三鳳2號品種植株處理不同濃度ASM後,24小時內之過氧化氫酶(catalase,CAT)活性的變化36表十、王冠與三鳳2號品種植株處理不同濃度ASM後,再接種炭疽病菌C.higginsianumPA01,24小時內之過氧化氫酶(CAT)活性的變化37表十一、王冠與三鳳2號品種植株處理不同濃度ASM後,7天內之過氧化酵素(peroxidase,POD)活性的變化38表十二、王冠與三鳳2號品種植株處理不同濃度ASM後,再接種炭疽病菌C.higginsianumPA01,6天內之過氧化酵素(POD)活性的變化39表十三、王冠與三鳳2號品種植株處理不同濃度ASM後,7天內之苯丙胺酸氨裂解酵素(phenylalanineammonialyase,PAL)活性的變化40表十四、王冠與三鳳2號品種植株處理不同濃度ASM後,再接種炭疽病菌C.higginsianumPA01,6天內之苯丙胺酸氨裂解酵素(PAL)活性的變化41圖目次圖一、施用100mg/LASM對不結球白菜植株外觀之影響。
(A)王冠品種(B)三鳳2號品種。
42圖二、處理100mg/LASM對不結球白菜幼苗外觀之影響。
(A)王冠品種對照組(B)王冠品種處理組(C)三鳳2號品種對照組(D)三鳳2號品種處理組。
43圖三、王冠品種植株處理不同濃度ASM後,24小時內之超氧化物歧化酶(SOD)活性的變化。
44圖四、三鳳2號品種植株處理不同濃度ASM後,24小時內之超氧化物歧化酶(SOD)活性的變化。
45圖五、王冠與三鳳2號品種植株接種炭疽病菌C.higginsianumPA01,24小時內之超氧化物歧化酶(SOD)活性的變化。
46圖六、王冠品種植株處理不同濃度ASM後,再接種炭疽病菌C.higginsianumPA01,24小時內之超氧化物歧化酶(SOD)活性的變化。
47圖七、三鳳2號品種植株處理不同濃度ASM後,再接種炭疽病菌C.higginsianumPA01,24小時內之超氧化物歧化酶(SOD)活性的變化。
48圖八、王冠品種植株處理不同濃度ASM後,24小時內之過氧化氫酶(CAT)活性的變化。
49圖九、三鳳2號品種植株處理不同濃度ASM後,24小時內之過氧化氫酶(CAT)活性的變化。
50圖十、王冠與三鳳2號品種植株接種炭疽病菌C.higginsianumPA01,24小時內之過氧化氫酶(CAT)活性的變化。
51圖十一、王冠品種植株處理不同濃度ASM後,再接種炭疽病菌C.higginsianumPA01,24小時內之過氧化氫酶(CAT)活性的變化。
52圖十二、三鳳2號品種植株處理不同濃度ASM後,再接種炭疽病菌C.higginsianumPA01,24小時內之過氧化氫酶(CAT)活性的變化。
53圖十三、王冠品種植株處理不同濃度ASM後,7天內之過氧化酵素(POD)活性的變化。
54圖十四、三鳳2號品種植株處理不同濃度ASM後,7天內之過氧化酵素(POD)活性的變化。
55圖十五、王冠與三鳳2號品種植株接種炭疽病菌C.higginsianumPA01,6天內之過氧化酵素(POD)活性的變化。
56圖十六、王冠品種植株處理不同濃度ASM後,再接種炭疽病菌C.higginsianumPA01,6天內之過氧化酵素(POD)活性的變化。
57圖十七、三鳳2號品種植株處理不同濃度ASM後,再接種炭疽病菌C.higginsianumPA01,6天內之過氧化酵素(POD)活性的變化。
58圖十八、王冠品種植株處理不同濃度ASM後,7天內之苯丙胺酸氨裂解酵素(PAL)活性的變化。
59圖十九、三鳳2號品種植株處理不同濃度ASM後,7天內之苯丙胺酸氨裂解酵素(PAL)活性的變化。
60圖二十、王冠與三鳳2號品種植株接種炭疽病菌C.higginsianumPA01,6天內之苯丙胺酸氨裂解酵素(PAL)活性的變化。
61圖二十一、王冠品種植株處理不同濃度ASM後,再接種炭疽病菌C.higginsianumPA01,6天內之苯丙胺酸氨裂解酵素(PAL)活性的變化。
62圖二十二、三鳳2號品種植株處理不同濃度ASM後,再接種炭疽病菌C.higginsianumPA01,6天內之苯丙胺酸氨裂解酵素(PAL)活性的變化。
63
AmericanSocietyofAgronomy,2011.Sustainableagriculture.GuilfordRd.,Madison,WI,USA:AmericanSocietyofAgronomy.Website:https://www.agronomy.org/about-agronomy/sustainable-agriculture.(2011/7/7)BeauverieJ,1901.Essaisd’immunisationdesvégétauxcontredesmaladiesryptogamïques.ComptesRendusdel''AcadémiedesSciences133:107-110.BigirimanaJ,HöfteM,2002.InductionofsystemicresistancetoColletotrichumlindemuthianuminbeanbyabenzothiadiazolederivativeandrhizobacteria.Phytoparasitica30:159-168.BoltonMD,2009.Primarymetabolismandplantdefense—fuelforthefire.MolecularPlant-MicrobeInteractions22:487-497.BuziA,ChilosiG,DeSilloD,MagroP,2004.InductionofresistanceinmelontoDidymellabryoniaeandSclerotiniasclerotiorumbyseedtreatmentswithacibenzolar-S-methylandmethyljasmonatebutnotwithaalicylicAcid.JournalofPhytopathology152:34-42.CaoJ,JiangW,HeH,2005.InducedresistanceinYaliPear(PyrusbretschneideriRehd.)fruitagainstinfectionbyPenicilliumexpansumbypostharvestinfiltrationofacibenzolar-S-methyl.JournalofPhytopathology153:640-646.ChinnasriB,SipesBS,SchmittDP,2003.Effectsofacibenzolar-s-methylapplicationtoRotylenchulusreniformisandMeloidogynejavanica.JournalofNematology35:110-114.ChinnasriB,SipesBS,SchmittDP,2006.EffectsofinducersofsystemicacquiredresistanceonreproductionofMeloidogynejavanicaandRotylenchulusreniformisinpineapple.JournalofNematology38:319-325.CoolsHJ,IshiiH,2002.Pre-treatmentofcucumberplantswithacibenzolar-S-methylsystemicallyprimesaphenyalanineammonialyasegene(PAL1)forenhancedexpressionuponattackwithapathogenicfungus.PhysiologicalandMolecularPlantPathology61:273-280.DeepakSA,IshiiH,ParkP,2006.Acibenzolar-S-methylprimescellwallstrengtheninggenesandreactiveoxygenspeciesforming/scavengingenzymesincucumberafterfungalpathogenattack.PhysiologicalandMolecularPlantPathology69:52-61.FaesselL,NassrN,LebeauT,WalterB,2008.Effectsoftheplantdefenceinducer,acibenzolar-S-methyl,onhypocotylrotofsoybeancausedbyRhizoctoniasolaniAG-4.JournalofPhytopathology156:236-242.FaizeM,FaizeL,KoikeN,IshizakaM,IshiiH,2004.Acibenzolar-S-methyl-inducedresistancetoJapanesepearscabisassociatedwithpotentiationofmultipledefenseresponses.Phytopathology94:604-612.FeiWQ,WangYQ,ChenFX,LinXM,LiYH,2010.Plantprotectionmanual(vegetables).TaiwanAgriculturalChemicalsandToxicSubstancesResearchInstituteCouncilofAgriculture.Taichung.280pp.FreedVH,HaqueR,1976.Chemicalstructureandpropertiesofselectedbenzenecompoundsinrelationtobiologicalactivity.EnvironmentalHealthPerspectives13:23-26.GörlachJ,VolrathS,Knauf-BeiterG,HengyG,BeckhoveU,KogelKH,OostendorpM,StaubT,WardE,KessmannH,RyalsJ,1996.Benzothiadiazole,anovelclassofinducersofsystemicacquiredresistance,activatesgeneexpressionanddiseaseresistanceinwheat.ThePlantCell8:629-643.IshiiH,TomitaY,HorioT,NarusakaY,NakazawaY,NishimuraK,IwamotoS,1999.Inducedresistanceofacibenzolar-S-methyl(CGA245704)tocucumberandJapanesepeardiseases.EuropeanJournalofPlantPathology105:77-85.HeilM,HilpertA,KaiserW,andLinsenmairKE,2000.Reducedgrowthandseedsetfollowingchemicalinductionofpathogendefence:doessystemicacquiredresistance(SAR)incurallocationcosts?JournalofEcology88:645-654.HeilM,2001.Theecologicalconceptofcostsofinducedsystemicresistance(ISR).EuropeanJournalofPlantPathology107:137-146.HuangRZ,1996.QuantitativeestimationofRhizoctoniaspp.,theorganismsofturfgrassbrownpatchandtheircontrol.Taichung:MasterDissertationofNationalChungHsingUniversity.152pp.HsiehTY,2010.EvaluationforefficacyoftotalproteinextractedfromAlternariatenuissimaAPR01oninducingChinesecabbageseedlingsresistanttoRhizoctoniadamping-off.Taichung:MasterDissertationofNationalChungHsingUniversity.47pp.JensenBD,Latunde-DadaAO,HudsonD,LucasJA,1998.ProtectionofBrassicaseedlingsagainstdownymildewanddamping-offbyseedtreatmentwithCGA245704,anactivatorofsystemicacquiredresistance.PesticideScience52:63-69.KućJ,1982.Inducedimmunitytoplantdiseases.BioScience32:854-860.Latunde-DadaAO,LucasJA,2001.Theplantdefenceactivatoracibenzolar-S-methylprimescowpea[Vignaunguiculata(L.)Walp.]seedlingsforrapidinductionofresistance.PhysiologicalandMolecularPlantPathology58:199-208.LinCL,2001.BiologicalcharacteristicsandcontrolofthecausalagentofCruciferousvegetableanthracnose.Taichung:MasterDissertationofNationalChungHsingUniversity.66pp.LinTC,IshiiH,2009.AccumulationofH2O2inxylemfluidsofcucumberstemsduringASM-inducedsystemicacquiredresistance(SAR)involvesincreasedLOXactivityandtransientaccumulationofshikimicacid.EuropeanJournalofPlantPathology125:119-130.LiuSY,LiuZ,FittBDL,EvansN,FosterSJ,HuangYJ,Latunde-DadaAO,LucasJA,2006.ResistancetoLeptosphaeriamaculans(phomastemcanker)inBrassicanapus(oilseedrape)inducedbyLeptosphaeriabiglobosaandchemicaldefenceactivatorsinfieldandcontrolledenvironments.PlantPathology55:401-412.LopezAMQ,LucasJA,2002.Effectsofplantdefenceactivatorsonanthracnosediseaseofcashew.EuropeanJournalofPlantPathology108:409-420.MuñozZ,MoretA,2010.SensitivityofBotrytiscinereatochitosanandacibenzolar-S-methyl.PestManagementScience66:974-979.OostendorpM,KunzW,DietrichB,StaubT,2001.Induceddiseaseresistanceinplantsbychemicals.EuropeanJournalofPlantPathology107:19-28.OwenKJ,GreenCD,DeverallBJ,2002.AbenzothiadiazoleappliedtofoliagereducesdevelopmentandeggdepositionbyMeloidogynespp.inglasshouse-growngrapevineroots.AustralasianPlantPathology31:47-53.PappuHR,CsinosAS,McPhersonRM,JonesDC,StephensonMG,2000.Effectofacibenzolar-S-methylandimidaclopridonsuppressionoftomatospottedwiltTospovirusinflue-curedtobacco.CropProtection19:349-354.PerezL,RodriguezME,RodriguezF,RosonC,2003.Efficacyofacibenzolar-S-methyl,aninducerofsystemicacquiredresistanceagainsttobaccobluemouldcausedbyPeronosporahyoscyamif.sp.tabacina.CropProtection22:405-413.PieterseCMJ,Leon-ReyesA,VanderEntS,VanWeesSCM,2009.Networkingbysmall-moleculehormonesinplantimmunity.NatureChemicalBiology5:308-316.PradhanangPM,JiP,MomolMT,OlsonSM,MayfieldJL,JonesJB,2005.Applicationofacibenzolar-S-methylenhanceshostresistanceintomatoagainstRalstoniasolanacearum.PlantDisease89:989-993.RayJ,1901.Lesmaladiescryptogamiquesdesvégétaux.RevueGénéraledeBotanique13:15-151.ResendeMLV,NojosaGBA,AguilarMAG,SilvaLHCP,PerezJO,AndradeGCG,CarvalhoGA,CastroRM,2002.InductionofresistanceincocoaagainstCrinipellisperniciosaandVerticilliumdahliaebyacibenzolar-S-methyl(ASM).PlantPathology51:621-628.ReuveniM,1998.Relationshipsbetweenleafage,peroxidaseandβ-1,3-glucanaseactivity,andresistancetodownymildewingrapevines.JournalofPhytopathology146:525-530.RohillaR,SinghUS,SinghRL,2001.Modeofactionofacibenzolar-S-methylagainstsheathblightofrice,causedbyRhizoctoniasolaniKühn.PestManagementScience58:63-69.ShibataY,KawakitaK,TakemotoD,2010.Age-relatedresistanceofNicotianabenthamianaagainsthemibiotrophicpathogenPhytophthorainfestansrequiresbothethylene-andsalicylicacid–mediatedsignalingpathways.MolecularPlant-MicrobeInteractions23:1130-1142.SoyluS,BaysalÖ,SoyluEM,2003.Inductionofdiseaseresistancebytheplantactivator,acibenzolar-Smethyl(ASM),againstbacterialcanker(Clavibactermichiganensissubsp.michiganensis)intomatoseedlings.PlantScience165:1069-1075.ThatcherLF,AndersonJP,SinghKB,2005.Plantdefenceresponses:whathavewelearntfromArabidopsis?FunctionalPlantBiology32:1-19.TsaiYC,2009.ScreeningantagonisticStreptomycesandantifungalmetabolitesanalysisofStreptomycessp.A272.Dissertation.Taichung:MasterDissertationofNationalChungHsingUniversity.103pp.ValladGE,GoodmanRM,2004.Systemicacquiredresistanceandinducedsystemicresistanceinconventionalagriculture.CropScience44:1920-1934.VéronésiC,DelavaultP,SirnierP,2009.Acibenzolar-S-methylinducesresistanceinoilseedrape(BrassicanapusL.)againstbranchedbroomrape(OrobancheramosaL.).CropProtection28:104-108.VogtT,2010.Phenylpropanoidbiosynthesis.MolecularPlant3:2-20.WaltersD,NewtonA,LyonG,2005a.Inducedresistance:helpingplantstohelpthemselves.TheBiologist52:28-33.WaltersD,WalshD,NewtonA,LyonG,2005b.Inducedresistanceforplantdiseasecontrol:maximizingtheefficacyofresistanceelicitors.Phytopathology95:1368-1373.WangHL,HsiehTF,ChungYY,2009.Controlofplantdiseasesandpestswithnon-pesticide.ScientificDevelopment443:42-49.WangST,LinZK,2005.Taiwanagricultureencyclopedia(CropⅡ):Chinesemustard.CouncilofAgricultureExecutiveYuan,Taipei,ROC.926pp.WenX,2006.Farmlife:Organicvegetablesarekeepconsumers’mindonbuyingandeating.AgriculturalInformationinKaohsiungCounty91:8-10.WhiteRF,1979.Acetylsalicylicacid(aspirin)inducesresistancetotobaccomosaicvirusintobacco.Virology99:410-412.WuZY,2009.Trendsofpesticideformulation.AgriculturePolicyandReview209:90.ZiadiS,BarbedetteS,GodardJF,MonotC,LeCorreD,SilueD,2001.Productionofpathogenesis-relatedproteinsinthecauliflower(Brassicaoleraceavar.botrytis)–downymildew(Peronosporaparasitica)pathosystemtreatedwithacibenzolar-S-methyl.PlantPathology50:579-586.ZhuJZ,QiuX,MoorePH,BorthW,HuJ,FerreiraS,AlbertHH,2003.SystemicacquiredresistanceinducedbyBTHinpapaya.PhysiologicalandMolecularPlantPathology63:237-248.
國圖紙本論文
推文
網路書籤
推薦
評分
引用網址
轉寄
top
相關論文
相關期刊
熱門點閱論文
無相關論文
無相關期刊
1.
評估微奈米鈣防治番茄細菌性斑點病與番茄疫病的效果和防病機制探討
2.
無病原性尖鐮胞菌防治胡瓜萎凋病之研究
3.
探討奈米矽片對草莓灰黴病菌與炭疽病菌生長之影響
4.
利用第一原理分子動力學研究奈米碳材儲氫機制與特性
5.
基於球座標系統之三維碎形浮水印技術之研究
6.
在不同生命週期下董事會組成特性對資訊透明度之影響
7.
無花果園藝性狀及其對南方根瘤線蟲感受性之調查
8.
臺灣水稻稻熱病菌(Pyriculariaoryzae)對黑色素生合成抑制劑與史托比類藥劑之感受性與族群多樣性研究
9.
引起蕙蘭與文心蘭葉斑病的鐮孢菌病原性測定與分子特性
10.
固態培養牛樟芝抗發炎及抗氧化活性
11.
楓香滲出物成分解析及其生物活性探討
12.
疏伐作業對森林景觀影響之研究
13.
焦點對投資人交易行為之影響
14.
永續經營之集水區保育治理策略探討-以古坑溪及崁頂溪集水區為例
15.
鏈格孢屬真菌之蛋白質萃取液誘導白菜抗立枯病之效果評估
簡易查詢 |
進階查詢 |
熱門排行 |
我的研究室
延伸文章資訊
- 1依白菜 - 作物病蟲害診斷管理系統民眾端
- 2夏季蔬菜常見之病害 - 臺中區農業改良場
(2)病原菌: Plasmodiophora brassicae,本菌係絕對寄生菌,可發生於平地和高山地區,主要危害白菜類。 (3)發病環境: 本病在土壤水分含量高的低窪地區與水田裡作物較 ...
- 3病害防治 - 蔬菜-結球白菜
病害防治 · 病原生態: 病原菌以低量在土壤、植株殘體、田間雜草之根部或根圈土壤存活。 · ( · 病徵: 病斑初呈水浸狀小點,迅速擴大,組織軟化、變色、起皺、腐爛、裂開, ...
- 4白菜- 蔬菜
- 5Acibenzolar-S-methyl防治不結球白菜病害之應用與可能抗病 ...
... 防禦反應而達到防治病害之效,此現象稱為誘導性抗病(induced resistance)。 ... 於種子浸泡ASM 防治不結球白菜苗立枯病之試驗中,僅有以10 mg/L ASM 處理三...