Modular arithmetic - Wikipedia

文章推薦指數: 80 %
投票人數:10人

Congruence[edit] ... Given an integer n > 1, called a modulus, two integers a and b are said to be congruent modulo n, if n is a divisor of their difference (that ... Modulararithmetic FromWikipedia,thefreeencyclopedia Jumptonavigation Jumptosearch Computationmoduloafixedinteger Thisarticleisaboutthe(modn)notation.Forthebinaryoperationmod(a,n),seemodulooperation. Time-keepingonthisclockusesarithmeticmodulo12.Adding4hoursto9o'clockgives1o'clock,since13iscongruentto1modulo12. Inmathematics,modulararithmeticisasystemofarithmeticforintegers,wherenumbers"wraparound"whenreachingacertainvalue,calledthemodulus.ThemodernapproachtomodulararithmeticwasdevelopedbyCarlFriedrichGaussinhisbookDisquisitionesArithmeticae,publishedin1801. Afamiliaruseofmodulararithmeticisinthe12-hourclock,inwhichthedayisdividedintotwo12-hourperiods.Ifthetimeis7:00now,then8hourslateritwillbe3:00.Simpleadditionwouldresultin7+8=15,butclocks"wraparound"every12hours.Becausethehournumberstartsoverafteritreaches12,thisisarithmeticmodulo12.Intermsofthedefinitionbelow,15iscongruentto3modulo12,so"15:00"ona24-hourclockisdisplayed"3:00"ona12-hourclock. Contents 1Congruence 1.1Examples 2Properties 3Congruenceclasses 4Residuesystems 4.1Reducedresiduesystems 5Integersmodulon 6Applications 7Computationalcomplexity 8Exampleimplementations 9Seealso 10Notes 11References 12Externallinks Congruence[edit] Givenanintegern>1,calledamodulus,twointegersaandbaresaidtobecongruentmodulon,ifnisadivisoroftheirdifference(thatis,ifthereisanintegerksuchthata−b=kn). Congruencemodulonisacongruencerelation,meaningthatitisanequivalencerelationthatiscompatiblewiththeoperationsofaddition,subtraction,andmultiplication.Congruencemodulonisdenoted: a ≡ b ( mod n ) . {\displaystylea\equivb{\pmod{n}}.} Theparenthesesmeanthat(modn)appliestotheentireequation,notjusttotheright-handside(here,b).Thisnotationisnottobeconfusedwiththenotationbmodn(withoutparentheses),whichreferstothemodulooperation.Indeed,bmodndenotestheuniqueintegerasuchthat0≤a0as: Z / n Z = { a ¯ n ∣ a ∈ Z } = { 0 ¯ n , 1 ¯ n , 2 ¯ n , … , n − 1 ¯ n } . {\displaystyle\mathbb{Z}/n\mathbb{Z}=\left\{{\overline{a}}_{n}\mida\in\mathbb{Z}\right\}=\left\{{\overline{0}}_{n},{\overline{1}}_{n},{\overline{2}}_{n},\ldots,{\overline{n{-}1}}_{n}\right\}.} (Whenn=0, Z / n Z {\displaystyle\mathbb{Z}/n\mathbb{Z}} isnotanemptyset;rather,itisisomorphicto Z {\displaystyle\mathbb{Z}} ,sincea0={a}.) Wedefineaddition,subtraction,andmultiplicationon Z / n Z {\displaystyle\mathbb{Z}/n\mathbb{Z}} bythefollowingrules: a ¯ n + b ¯ n = ( a + b ) ¯ n {\displaystyle{\overline{a}}_{n}+{\overline{b}}_{n}={\overline{(a+b)}}_{n}} a ¯ n − b ¯ n = ( a − b ) ¯ n {\displaystyle{\overline{a}}_{n}-{\overline{b}}_{n}={\overline{(a-b)}}_{n}} a ¯ n b ¯ n = ( a b ) ¯ n . {\displaystyle{\overline{a}}_{n}{\overline{b}}_{n}={\overline{(ab)}}_{n}.} Theverificationthatthisisaproperdefinitionusesthepropertiesgivenbefore. Inthisway, Z / n Z {\displaystyle\mathbb{Z}/n\mathbb{Z}} becomesacommutativering.Forexample,inthering Z / 24 Z {\displaystyle\mathbb{Z}/24\mathbb{Z}} ,wehave 12 ¯ 24 + 21 ¯ 24 = 33 ¯ 24 = 9 ¯ 24 {\displaystyle{\overline{12}}_{24}+{\overline{21}}_{24}={\overline{33}}_{24}={\overline{9}}_{24}} asinthearithmeticforthe24-hourclock. Weusethenotation Z / n Z {\displaystyle\mathbb{Z}/n\mathbb{Z}} becausethisisthequotientringof Z {\displaystyle\mathbb{Z}} bytheideal n Z {\displaystylen\mathbb{Z}} ,asetcontainingallintegersdivisiblebyn,where 0 Z {\displaystyle0\mathbb{Z}} isthesingletonset{0}.Thus Z / n Z {\displaystyle\mathbb{Z}/n\mathbb{Z}} isafieldwhen n Z {\displaystylen\mathbb{Z}} isamaximalideal(i.e.,whennisprime). Thiscanalsobeconstructedfromthegroup Z {\displaystyle\mathbb{Z}} undertheadditionoperationalone.Theresidueclassanisthegroupcosetofainthequotientgroup Z / n Z {\displaystyle\mathbb{Z}/n\mathbb{Z}} ,acyclicgroup.[8] Ratherthanexcludingthespecialcasen=0,itismoreusefultoinclude Z / 0 Z {\displaystyle\mathbb{Z}/0\mathbb{Z}} (which,asmentionedbefore,isisomorphictothering Z {\displaystyle\mathbb{Z}} ofintegers).Infact,thisinclusionisusefulwhendiscussingthecharacteristicofaring. Theringofintegersmodulonisafinitefieldifandonlyifnisprime(thisensuresthateverynonzeroelementhasamultiplicativeinverse).If n = p k {\displaystylen=p^{k}} isaprimepowerwithk>1,thereexistsaunique(uptoisomorphism)finitefield G F ( n ) = F n {\displaystyle\mathrm{GF}(n)=\mathbb{F}_{n}} withnelements,butthisisnot Z / n Z {\displaystyle\mathbb{Z}/n\mathbb{Z}} ,whichfailstobeafieldbecauseithaszero-divisors. Themultiplicativesubgroupofintegersmodulonisdenotedby ( Z / n Z ) × {\displaystyle(\mathbb{Z}/n\mathbb{Z})^{\times}} .Thisconsistsof a ¯ n {\displaystyle{\overline{a}}_{n}} (whereaiscoprimeton),whicharepreciselytheclassespossessingamultiplicativeinverse.Thisformsacommutativegroupundermultiplication,withorder φ ( n ) {\displaystyle\varphi(n)} . Applications[edit] Intheoreticalmathematics,modulararithmeticisoneofthefoundationsofnumbertheory,touchingonalmosteveryaspectofitsstudy,anditisalsousedextensivelyingrouptheory,ringtheory,knottheory,andabstractalgebra.Inappliedmathematics,itisusedincomputeralgebra,cryptography,computerscience,chemistryandthevisualandmusicalarts. Averypracticalapplicationistocalculatechecksumswithinserialnumberidentifiers.Forexample,InternationalStandardBookNumber(ISBN)usesmodulo11(for10digitISBN)ormodulo10(for13digitISBN)arithmeticforerrordetection.Likewise,InternationalBankAccountNumbers(IBANs),forexample,makeuseofmodulo97arithmetictospotuserinputerrorsinbankaccountnumbers.Inchemistry,thelastdigitoftheCASregistrynumber(auniqueidentifyingnumberforeachchemicalcompound)isacheckdigit,whichiscalculatedbytakingthelastdigitofthefirsttwopartsoftheCASregistrynumbertimes1,thepreviousdigittimes2,thepreviousdigittimes3etc.,addingalltheseupandcomputingthesummodulo10. Incryptography,modulararithmeticdirectlyunderpinspublickeysystemssuchasRSAandDiffie–Hellman,andprovidesfinitefieldswhichunderlieellipticcurves,andisusedinavarietyofsymmetrickeyalgorithmsincludingAdvancedEncryptionStandard(AES),InternationalDataEncryptionAlgorithm(IDEA),andRC4.RSAandDiffie–Hellmanusemodularexponentiation. Incomputeralgebra,modulararithmeticiscommonlyusedtolimitthesizeofintegercoefficientsinintermediatecalculationsanddata.Itisusedinpolynomialfactorization,aproblemforwhichallknownefficientalgorithmsusemodulararithmetic.Itisusedbythemostefficientimplementationsofpolynomialgreatestcommondivisor,exactlinearalgebraandGröbnerbasisalgorithmsovertheintegersandtherationalnumbers.AspostedonFidonetinthe1980sandarchivedatRosettaCode,modulararithmeticwasusedtodisproveEuler'ssumofpowersconjectureonaSinclairQLmicrocomputerusingjustone-fourthoftheintegerprecisionusedbyaCDC6600supercomputertodisproveittwodecadesearlierviaabruteforcesearch.[9] Incomputerscience,modulararithmeticisoftenappliedinbitwiseoperationsandotheroperationsinvolvingfixed-width,cyclicdatastructures.Themodulooperation,asimplementedinmanyprogramminglanguagesandcalculators,isanapplicationofmodulararithmeticthatisoftenusedinthiscontext.ThelogicaloperatorXORsums2bits,modulo2. Inmusic,arithmeticmodulo12isusedintheconsiderationofthesystemoftwelve-toneequaltemperament,whereoctaveandenharmonicequivalencyoccurs(thatis,pitchesina1:2or2:1ratioareequivalent,andC-sharpisconsideredthesameasD-flat). Themethodofcastingoutninesoffersaquickcheckofdecimalarithmeticcomputationsperformedbyhand.Itisbasedonmodulararithmeticmodulo9,andspecificallyonthecrucialpropertythat10≡1(mod9). Arithmeticmodulo7isusedinalgorithmsthatdeterminethedayoftheweekforagivendate.Inparticular,Zeller'scongruenceandtheDoomsdayalgorithmmakeheavyuseofmodulo-7arithmetic. Moregenerally,modulararithmeticalsohasapplicationindisciplinessuchaslaw(e.g.,apportionment),economics(e.g.,gametheory)andotherareasofthesocialsciences,whereproportionaldivisionandallocationofresourcesplaysacentralpartoftheanalysis. Computationalcomplexity[edit] Sincemodulararithmetichassuchawiderangeofapplications,itisimportanttoknowhowharditistosolveasystemofcongruences.AlinearsystemofcongruencescanbesolvedinpolynomialtimewithaformofGaussianelimination,fordetailsseelinearcongruencetheorem.Algorithms,suchasMontgomeryreduction,alsoexisttoallowsimplearithmeticoperations,suchasmultiplicationandexponentiationmodulo n,tobeperformedefficientlyonlargenumbers. Someoperations,likefindingadiscretelogarithmoraquadraticcongruenceappeartobeashardasintegerfactorizationandthusareastartingpointforcryptographicalgorithmsandencryption.TheseproblemsmightbeNP-intermediate. Solvingasystemofnon-linearmodulararithmeticequationsisNP-complete.[10] Exampleimplementations[edit] Thissectionpossiblycontainsoriginalresearch.Pleaseimproveitbyverifyingtheclaimsmadeandaddinginlinecitations.Statementsconsistingonlyoforiginalresearchshouldberemoved.(May2020)(Learnhowandwhentoremovethistemplatemessage) BelowarethreereasonablyfastCfunctions,twoforperformingmodularmultiplicationandoneformodularexponentiationonunsignedintegersnotlargerthan63bits,withoutoverflowofthetransientoperations. Analgorithmicwaytocompute a ⋅ b ( mod m ) {\displaystylea\cdotb{\pmod{m}}} :[11] uint64_tmul_mod(uint64_ta,uint64_tb,uint64_tm){ if(!((a|b)&(0xFFFFFFFFULL<<32)))returna*b%m; uint64_td=0,mp2=m>>1; inti; if(a>=m)a%=m; if(b>=m)b%=m; for(i=0;i<64;++i){ d=(d>mp2)?(d<<1)-m:d<<1; if(a&0x8000000000000000ULL)d+=b; if(d>=m)d-=m; a<<=1; } returnd; } Oncomputerarchitectureswhereanextendedprecisionformatwithatleast64bitsofmantissaisavailable(suchasthelongdoubletypeofmostx86Ccompilers),thefollowingroutineis[clarificationneeded],byemployingthetrickthat,byhardware,floating-pointmultiplicationresultsinthemostsignificantbitsoftheproductkept,whileintegermultiplicationresultsintheleastsignificantbitskept:[citationneeded] uint64_tmul_mod(uint64_ta,uint64_tb,uint64_tm){ longdoublex; uint64_tc; int64_tr; if(a>=m)a%=m; if(b>=m)b%=m; x=a; c=x*b/m; r=(int64_t)(a*b-c*m)%(int64_t)m; returnr<0?r+m:r; } BelowisaCfunctionforperformingmodularexponentiation,thatusesthemul_modfunctionimplementedabove. Analgorithmicwaytocompute a b ( mod m ) {\displaystylea^{b}{\pmod{m}}} : uint64_tpow_mod(uint64_ta,uint64_tb,uint64_tm){ uint64_tr=m==1?0:1; while(b>0){ if(b&1)r=mul_mod(r,a,m); b=b>>1; a=mul_mod(a,a,m); } returnr; } However,forallaboveroutinestowork,mmustnotexceed63bits. Seealso[edit] Booleanring Circularbuffer Division(mathematics) Finitefield Legendresymbol Modularexponentiation Modulo(mathematics) Multiplicativegroupofintegersmodulon Pisanoperiod(Fibonaccisequencesmodulon) Primitiverootmodulon Quadraticreciprocity Quadraticresidue Rationalreconstruction(mathematics) Reducedresiduesystem Serialnumberarithmetic(aspecialcaseofmodulararithmetic) Two-elementBooleanalgebra Topicsrelatingtothegrouptheorybehindmodulararithmetic: Cyclicgroup Multiplicativegroupofintegersmodulon Otherimportanttheoremsrelatingtomodulararithmetic: Carmichael'stheorem Chineseremaindertheorem Euler'stheorem Fermat'slittletheorem(aspecialcaseofEuler'stheorem) Lagrange'stheorem Thue'slemma Notes[edit] ^SandorLehoczky;RichardRusczky.DavidPatrick(ed.).theArtofProblemSolving.Vol. 1(7 ed.).p. 44.ISBN 0977304566. ^Weisstein,EricW."ModularArithmetic".mathworld.wolfram.com.Retrieved2020-08-12. ^Pettofrezzo&Byrkit(1970,p. 90) ^Long(1972,p. 78) ^Long(1972,p. 85) ^Itisaring,asshownbelow. ^"2.3:IntegersModulon".MathematicsLibreTexts.2013-11-16.Retrieved2020-08-12. ^SengadirT.,DiscreteMathematicsandCombinatorics,p.293,atGoogleBooks ^"Euler'ssumofpowersconjecture".rosettacode.org.Retrieved2020-11-11. ^Garey,M.R.;Johnson,D.S.(1979).ComputersandIntractability,aGuidetotheTheoryofNP-Completeness.W.H.Freeman.ISBN 0716710447. ^ThiscodeusestheCliteralnotationforunsignedlonglonghexadecimalnumbers,whichendwithULL.Seealsosection6.4.4ofthelanguagespecificationn1570. References[edit] JohnL.Berggren."modulararithmetic".EncyclopædiaBritannica. Apostol,TomM.(1976),Introductiontoanalyticnumbertheory,UndergraduateTextsinMathematics,NewYork-Heidelberg:Springer-Verlag,ISBN 978-0-387-90163-3,MR 0434929,Zbl 0335.10001.Seeinparticularchapters5and6forareviewofbasicmodulararithmetic. MaartenBullynck"ModularArithmeticbeforeC.F.Gauss.Systematisationsanddiscussionsonremainderproblemsin18th-centuryGermany" ThomasH.Cormen,CharlesE.Leiserson,RonaldL.Rivest,andCliffordStein.IntroductiontoAlgorithms,SecondEdition.MITPressandMcGraw-Hill,2001.ISBN 0-262-03293-7.Section31.3:Modulararithmetic,pp. 862–868. AnthonyGioia,NumberTheory,anIntroductionReprint(2001)Dover.ISBN 0-486-41449-3. Long,CalvinT.(1972).ElementaryIntroductiontoNumberTheory(2nd ed.).Lexington:D.C.HeathandCompany.LCCN 77171950. Pettofrezzo,AnthonyJ.;Byrkit,DonaldR.(1970).ElementsofNumberTheory.EnglewoodCliffs:PrenticeHall.LCCN 71081766. Sengadir,T.(2009).DiscreteMathematicsandCombinatorics.Chennai,India:PearsonEducationIndia.ISBN 978-81-317-1405-8.OCLC 778356123. Externallinks[edit] "Congruence",EncyclopediaofMathematics,EMSPress,2001[1994] Inthismodularartarticle,onecanlearnmoreaboutapplicationsofmodulararithmeticinart. AnarticleonmodulararithmeticontheGIMPSwiki ModularArithmeticandpatternsinadditionandmultiplicationtables vteNumbertheoryFields Algebraicnumbertheory(classfieldtheory,non-abelianclassfieldtheory,Iwasawatheory,Iwasawa-Tatetheory,Kummertheory) Analyticnumbertheory(analytictheoryofL-functions,probabilisticnumbertheory,sievetheory) Geometricnumbertheory Computationalnumbertheory Transcendentalnumbertheory Diophantinegeometry(Arakelovtheory,Hodge–Arakelovtheory) Arithmeticcombinatorics(additivenumbertheory) Arithmeticgeometry(anabeliangeometry,P-adicHodgetheory) Arithmetictopology Arithmeticdynamics Keyconcepts Numbers Naturalnumbers Primenumbers Rationalnumbers Irrationalnumbers Algebraicnumbers Transcendentalnumbers P-adicnumbers(P-adicanalysis) Arithmetic Modulararithmetic Chineseremaindertheorem Arithmeticfunctions Advancedconcepts Quadraticforms Modularforms L-functions Diophantineequations Diophantineapproximation Continuedfractions Category Listoftopics Listofrecreationaltopics Wikibook Wikiversity Retrievedfrom"https://en.wikipedia.org/w/index.php?title=Modular_arithmetic&oldid=1094563299" Categories:ModulararithmeticFiniteringsGrouptheoryHiddencategories:ArticleswithshortdescriptionShortdescriptionisdifferentfromWikidataArticlesthatmaycontainoriginalresearchfromMay2020AllarticlesthatmaycontainoriginalresearchWikipediaarticlesneedingclarificationfromMay2020AllarticleswithunsourcedstatementsArticleswithunsourcedstatementsfromMay2020ArticleswithexampleCcode Navigationmenu Personaltools NotloggedinTalkContributionsCreateaccountLogin Namespaces ArticleTalk English Views ReadEditViewhistory More Search Navigation MainpageContentsCurrenteventsRandomarticleAboutWikipediaContactusDonate Contribute HelpLearntoeditCommunityportalRecentchangesUploadfile Tools WhatlinkshereRelatedchangesUploadfileSpecialpagesPermanentlinkPageinformationCitethispageWikidataitem Print/export DownloadasPDFPrintableversion Inotherprojects WikimediaCommonsWikibooks Languages العربيةAsturianuবাংলাБашҡортсаBosanskiCatalàČeštinaΕλληνικάEspañolEsperantoEuskaraفارسیFrançaisGalego한국어हिन्दीHrvatskiBahasaIndonesiaÍslenskaItalianoעבריתLatinaLombardMagyarമലയാളംNederlands日本語NorskbokmålPolskiPortuguêsРусскийShqipSimpleEnglishSlovenčinaSlovenščinaکوردیСрпски/srpskiSrpskohrvatski/српскохрватскиSuomiSvenskaதமிழ்ไทยTürkçeУкраїнськаاردوTiếngViệt粵語中文 Editlinks



請為這篇文章評分?