Radar chart - Wikipedia

文章推薦指數: 80 %
投票人數:10人

A radar chart is a graphical method of displaying multivariate data in the form of a two-dimensional chart of three or more quantitative variables ... Radarchart FromWikipedia,thefreeencyclopedia Jumptonavigation Jumptosearch Typeofchart "Spiderchart"redirectshere.FortheextensionofEulerdiagrams,seeSpiderdiagram. ExamplestarplotfromNASA,withsomeofthemostdesirabledesignresultsrepresentedinthecenterThisspiderchartrepresentstheallocatedbudgetversusactualspendingforagivenorganization. Aradarchartisagraphicalmethodofdisplayingmultivariatedataintheformofatwo-dimensionalchartofthreeormorequantitativevariablesrepresentedonaxesstartingfromthesamepoint.Therelativepositionandangleoftheaxesistypicallyuninformative,butvariousheuristics,suchasalgorithmsthatplotdataasthemaximaltotalarea,canbeappliedtosortthevariables(axes)intorelativepositionsthatrevealdistinctcorrelations,trade-offs,andamultitudeofothercomparativemeasures.[1] Theradarchartisalsoknownaswebchart,spiderchart,spidergraph,spiderwebchart,starchart,[2]starplot,cobwebchart,irregularpolygon,polarchart,orKiviatdiagram.[3][4]Itisequivalenttoaparallelcoordinatesplot,withtheaxesarrangedradially. Contents 1Overview 2Applications 3SoftwareImplementation 3.1CodeExample 4Usage 5Limitations 5.1Artificialstructure 5.2Datasetsize 6Example 7Alternatives 8Seealso 9References 10Externallinks Overview[edit] Theradarchartisachartand/orplotthatconsistsofasequenceofequi-angularspokes,calledradii,witheachspokerepresentingoneofthevariables.Thedatalengthofaspokeisproportionaltothemagnitudeofthevariableforthedatapointrelativetothemaximummagnitudeofthevariableacrossalldatapoints.Alineisdrawnconnectingthedatavaluesforeachspoke.Thisgivestheplotastar-likeappearanceandtheoriginofoneofthepopularnamesforthisplot.Thestarplotcanbeusedtoanswerthefollowingquestions:[5] Whichobservationsaremostsimilar,i.e.,arethereclustersofobservations?(Radarchartsareusedtoexaminetherelativevaluesforasingledatapoint(e.g.,point3islargeforvariables2and4,smallforvariables1,3,5,and6)andtolocatesimilarpointsordissimilarpoints.)[5] Arethereoutliers? Radarchartsareausefulwaytodisplaymultivariateobservationswithanarbitrarynumberofvariables.[6]Eachstarrepresentsasingleobservation.Typically,radarchartsaregeneratedinamulti-plotformatwithmanystarsoneachpageandeachstarrepresentingoneobservation.[5]ThestarplotwasfirstusedbyGeorgvonMayrin1877.[7][8]Radarchartsdifferfromglyphplotsinthatallvariablesareusedtoconstructtheplottedstarfigure.Thereisnoseparationintoforegroundandbackgroundvariables.Instead,thestar-shapedfiguresareusuallyarrangedinarectangulararrayonthepage.Itissomewhateasiertoseepatternsinthedataiftheobservationsarearrangedinsomenon-arbitraryorder(ifthevariablesareassignedtotheraysofthestarinsomemeaningfulorder).[9] Applications[edit] Themainapplicationofradarchartsistomeasuremultivariabledatabeingsharedamongsimilargroups,people,orobjects.Thismeansradarchartshaveanincrediblywidevarietyofusesinfieldsincludingathletics,performancemetrics,lifesciences,education,andbusinessamongmanyothers.[10]Theseapplicationsallowresearcherstovisualizedataandhelpthemcompare,analyze,andeffectivelymakedecisionsaboutdatasetstheyarelookingatbasedontheinsightsprovidedbythechartedvariables.[11] Figure3.Aradarchartdepictingstandardbattingstatisticsfromthe2021MLBSeason.2021MVPShoehiOhtani,green,canbeseenperformingfarbetterthantheDH,red,andMLB,blue,averagesforthatseason,contributingtohiswin.Noticethoughthathealsostrikesoutmoreoften,likelybeingtradeoffforhisincreasedsluggingpercentage.Thedatacomesfromhttps://www.baseball-reference.com/. Radarchartscommonlyusedinsportstochartplayers'strengthsandweaknesses.[12]Thisisdonebycalculatingvariousstatisticsrelatedtotheplayerthatcantrackedalongthecentralaxisofthechart.Examplesincludeabasketplayersshotsmade,rebounds,assists,etc.,orthebattingorpitchingstatsofabaseballplayer.Thiscreatesacentralizedvisualizationofthestrengthsandweaknessesofaplayer,andifoverlappedwiththestatisticsofotherplayersorleagueaverages,candisplaywhereaplayerexcelsandwheretheycouldimprove.[13]Theseinsightsintoplayerstrengthsandweaknesscouldprovecrucialtoplayerdevelopmentasitallowscoachesandtrainerstoadjustaplayer'strainingregimenttohelpimproveontheirweaknesses.Theresultsoftheradarchartcanalsobeusefulinsituationalplay.Ifabatterisshowntohitpoorlyagainstleft-handedpitching,thenhisteamknowstolimithisplateappearancesagainstleft-handedpitchers,whiletheopposingteammaytrytoforceasituationwherethebatterisforcedtohitagainstthepitcher.Whenusedforcomparison,theycanalsoillustratehowgoodanathleteis,suchasbyahalloffamecandidatetootherhalloffamecandidates. Anotherapplicationofradarchartsisthecontrolofqualityimprovementtodisplaytheperformancemetricsvariousobjectsincludingcomputerprograms,[14]computers,phones,vehicles,andmore.Computerprogrammeroftenuseanalyticstotesttheperformanceoftheirprogramsversusothers.Anexampleofthiswhereradarchartsmaybeusefulistheperformanceanalysisofvarioussortingalgorithms.Aprogrammercouldgatherupseveraldifferentsortingalgorithmssuchasselection,bubble,andquick,thenanalyzetheperformanceofthesealgorithmsbymeasuringtheirspeed,memoryusage,andpowerusage,thengraphtheseonaradarcharttoseehoweachsortperformsundervarioussizesofdata.Anotherperformanceapplicationismeasuringtheperformanceofsimilarcarsagainsteachother.Aconsumercouldlookatvariablessuchasthecars’topspeed,milespergallon,horsepower,andtorque.Thenafterusingaradarcharttovisualizethedata,theycoulddecideonwhatcarisbestforthembasedontheresults. Figure4.Aradarchartillustratingthedifferencesinperformancemetricsofasedan,sportscar,andpickuptruck.Theradarchartcouldbeusefultoshopperlookingtofindthebestcartofittheirneeds,withthedifferentverticesofthechartshowingwhereeachcarperformswellandwhereeachperformspoorly.Thedataisgeneralizedanddoesnotcomefromaspecificsource. Onemoremajorusageofradarchartsisinlifesciences.Radarchartscanbeusedforwideawayofrelateddatasetssuchasstrengthsandweaknessofdrugsandothermedications.[15]Usingtheexampleoftwoanti-depressants,aresearchercanrankvariablessuchasefficacy,sideeffects,cost,etc.onascaleofonetoten.Theycouldthengraphtheresultsusingaradarcharttoseethespreadofvariablesandfindhowthediffer,suchasoneanti-depressantbeingcheaperandquickeracting,butnothavinggreatreliefovertime.Meanwhile,theotheranti-depressantprovidesstrongerreliefandholdsupbetterovertimebutismoreexpensive.Anotherlifescienceapplicationisinpatientanalysis.Radarchartscanbeusedtographthevariablesoflifeaffectingaperson'swellness,andthenbeanalyzedtohelpthem.Amorespecificexampleisinthecaseofathletes,who’svariouswellnesshabitssuchassleep,diet,andstressaremonitoredtomakesuretheystayinpeakphysicalcondition.[16]Ifanyareaswouldbeshowndipping,doctorsandtrainerscouldstepintoassisttheathleteandimprovetheirwellness. Theradarchartisanincrediblyusefulandpowerfultoolfordatavisualization.Thewidearrayoffieldstheycanbeappliedto,andthemultitudeofwaystheycanusedinthosefieldsmakesthemamustlearnaspectofdatamininganddataanalytics.Theyareincrediblyusefulforthefindingperformanceofdifferentdatasetsrelatedbythesamemultivariablesetofdata,andmakingdecisionsbasedtheanalysisofthosedatasets.Additionally,theyhaverelativelyeasytoreaddesignsthatcanchangecolorstohelpdifferentiatetheobjectsbeinglookedat,userelativelylessspacecomparedtoothergraphs,andoverallhaveasmoothandpresentablelooktothem.Radarchartshavesomedrawbacks,suchastryingtousethemwhenthevariablesaremeasuredonscalesthatarenotclosetoeachother,andtheytendtoworkbestwithlessthaneighttotenvariablesandgroupsofthreeorfewerobjects.[17]Despitethesedrawbacks,radarchartsareoneofthebesttoolsinadataanalyticstoolbagforbothprofessionalsandenthusiast. SoftwareImplementation[edit] SoftwarecanbeusedtogenerateRadarChartsinanefficientmanner.Pythonisoneexample.WithinPythondifferentlibrariesofcodecanbeaccessedwithdifferentfunctionalities.PlotlyisausefulgraphinglibraryforRadarChartsinPython.PlotlysupportsmultipletypesofRadarCharts. TocreateabasicRadarChartusingPlotlyyouwillneedtodefineafigurewhichconsistsoftwolistsofdata,theradiiandthecorrespondingmagnitudevalues.NextPlotlyrequiresyoutoupdatethefigure'slayoutwhichincludesaspectssuchasradialaxisvisibilityandwhetherornotthereisalegendtothegraph.Oncethisiscompleted,allthatislefttodoistocalltheshowfunctiononyourfigureobjectwhichwillproducetheRadarChart.[18] TocreateamultipletraceRadarChartusingPlotlytheprocessismostlythesameasabovewiththebasicRadarChartbutwithonedifference.Similartothestepsaboveyoufirstcreateafigureobject,butnowinsteadofimmediatelyfillingthisfigurewithdatayouinsteadneedtocalltheadd_tracefunctionforeachtraceyouwanttoadd.Withintheadd_tracefunctiontheRadarChart'sradiiandmagnitudevaluesareinputtedfortheirrespectivetrace.[18] PlotlyisnottheonlylibraryavailabletoPythontoproduceaRadarChart,andPythonisnottheonlyprogramminglanguagetheycanbeproducedin.PlotlystandsoutasagreatoptionforproducingRadarChart'sbecauseitiseasytouseandflexible.Thelogicissimpletofollowandwelldocumentedontheirwebsitewhichisreferencedabove.Theoptiontoaddtracesortojustuseonemakeitflexible.Pythonisagoodchoiceforprogrammingwithdataanalysis.Newlibrariesarealwaysbeingcreatedtogowiththeplethorathatalreadyexistandthelearningcurveforthelanguageisverylowmakingitagoodchoiceforeventhosewithlimitedprogrammingexperience. CodeExample[edit] #ExampleRadarChartwithMultipleTrace #Requiredimportstatementtousethelibrary importplotly.graph_objectsasgo #Defineafigure fig=go.figure() #Calltheadd_tracefunction fig.add_trace(go.Scatterpolar( r=[] theta= fill='toself' name='' )) #Repeatthelastfunctioncallforeachtraceyouwanttoadd fig.add_trace(go.Scatterpolar( r=[] theta= fill='toself' name='' )) #Updatethefigure'slayout fig.update_layout( polar=dict( radialaxis=dict( visible=True, ), ), ) #DisplaytheRadarChart fig.show() Usage[edit] Figure5. Theradarchartshows2setsofcommunities(seealsoCommunityStructure)thatconsistofconnectedgenomicwindowswhichseethesameNP(thenamesofthespokeswithinthepentagram).Inavisualanalysis,wecandeterminethatthetwocommunitiesarecloseinthattheyseesimilaramountsofthegivenNP's.ThedatapointsarerepresentedasapercentageofthecommunitythatseetheNP. Asmentionedpreviouslytheusageofradarchartsisforabettervisualanalysisoftwoormoresetsofdatapoints.Oftensomeusagesofaradarchartaretoshowtheattributesofthingssuchasvideogamecharacters,sportsplayers,andsoon.Conversely,radarchartsarealsousedwidelyinacademicandresearchcategoriestoallowvisualanalysisofdatasetstothenfurtherexploremorerigorously.Weareabletoseeoutliers,clusters(seealsoClusterAnalysis),andothertrendanalysiswithinthedatathatmayotherwisebehardertointerpretwhilevisuallyviewingthedatapointsetitself.[19]AnexampleasshowninFigure5isonesuchusageofaradarchart.Inthisinstance,weutilizetheradarcharttovisualizetwogenomicwindowstoNP's(seealsoGenomearchitecturemappingandPurinenucleosidephosphorylase)thattheymayormaynotpossess.[20]OurdatasetconsistsoffourteennumbersthatrepresentthepercentageofNP'sthatourgenomicwindowshaveseen.ThatistosaythatthewindowscontainthoseNPsequences. Thedirectimplementationfortheresultofthisradarchartisasfollows: PythonCode: #Createalistofnamesforthespokesofthechart,theseourtheNP’sasmentionedabove labels=['Hist1','LAD','Vmn','RNAPII-S2P','RNAPII-S5P','RNAPII-S7P','Enhancer','H3K9me3','H3K20me3','H3K36me3','NANOG','pou5f1','sox2','CTCF-7BWU'] #Gethowmanyspokestherewillbeonthechart,whichishowmanylabelswehave N=len(labels) #Callthemainfunctiontocreatetheradarchart theta=radar_factory(N,frame='polygon') #Initializeourgivendata.Thiswillbealistofnumbersthatwillrepresentthepointsonthechart case_data=[(7.27,61.81,49.09,20.0,45.45,34.54,25.454545454545453,16.36,29.09090909090909,29.09,20.0,23.63,18.18,16.36),(10.52,59.64,49.12,24.561,49.12,36.84,21.05,10.52,24.56,26.31,19.29,22.80,21.052631578947366,22.80)] #Givethesizeofthechart fig,ax=plt.subplots(figsize=(6,6),subplot_kw=dict(projection='radar')) fig.subplots_adjust(top=0.85,bottom=0.05) #Theintervalsoftheringswithintheradarchart ax.set_rgrids([0,5,10,15,20,25,30,35,40,45,50,55,60,65,70]) #Thetitleoftheradarchart title='WikiArticleRadarChartExample' ax.set_title(title,position=(0.5,1.1),ha='center') #Fillinthegraphwithfromoutdata fordincase_data: line=ax.plot(theta,d) ax.fill(theta,d,alpha=0.15) #Setthenameswithinthechartfromourlistofnames ax.set_varlabels(labels) #Addlegendtotop-leftplot legend=plt.legend(['Community1','Community2'],loc=(0.9,.95),labelspacing=0.1,fontsize='small') #Showgraph plt.show() Note:Thecodeimplementationaboveisutilizingradar_factory’sradarchartimplementationalongwithmatplotlibandotherpackages.Thisisfunctionalcodethatwillworkifyoucopyandpastetheradar_factoryimplementationandthecodeasseenabove.[21] Withinthisusageoftheradarchartourgivendatapointswereverycloseinproximitytoeachother.Duetothis,wecouldhavevisuallydeterminedthatthewindowswerecloseinvaluetoeachother.Thusinthisrepresentation,theimportancecomesfromitsvisualaspecttoshowthedatapointsinaneasyandagreeableformatasshown.NowpreviewingtheradarchartitselfwecanvisuallydeterminethatmostofthevaluesinrelationtotheNPwereveryclose.Thatistosaythatthevalueswereusuallywithintheonetofivepointdifferencemark.Nowthatwehavedeterminedthatfactwecouldthenfurtherexplorewhythatisthecaseandadjustourdatasetstoseesomepossiblechangesinoutcomesasmentionedwithintheseealsoabove. Limitations[edit] Radarchartsareprimarilysuitedforstrikinglyshowingoutliersandcommonality,orwhenonechartisgreaterineveryvariablethananother,andprimarilyusedforordinalmeasurements–whereeachvariablecorrespondsto"better"insomerespect,andallvariablesonthesamescale. Conversely,radarchartshavebeencriticizedaspoorlysuitedformakingtrade-offdecisions–whenonechartisgreaterthananotheronsomevariables,butlessonothers.[22] Further,itishardtovisuallycomparelengthsofdifferentspokes,becauseradialdistancesarehardtojudge,thoughconcentriccircleshelpasgridlines.Instead,onemayuseasimplelinegraph,particularlyfortimeseries.[23] Radarchartscandistortdatatosomeextent,especiallywhenareasarefilledin,becausetheareacontainedbecomesproportionaltothesquareofthelinearmeasures.Forexample,inachartwith5variablesthatrangefrom1to100,theareacontainedbythepolygonboundedby5pointswhenallmeasuresare90,ismorethan10%largerthanthesameforachartwithallvaluesof82. Radarchartscanalsobecomehardtovisuallycomparebetweendifferentsamplesonthechartwhentheirvaluesarecloseastheirlinesorareasbleedintoeachother,asshowninFigure5below. Artificialstructure[edit] Radarchartsimposeseveralstructuresondata,whichareoftenartificial: Relatednessofneighbors–radarchartsareoftenusedwhenneighboringvariablesareunrelated,creatingspuriousconnections. Cyclicstructure–thefirstandlastvariablesareplacednexttoeachother. Length–variablesareoftenmostnaturallyordinal:betterorworse,thoughthedegreeofdifferencemaybeartificial. Area–areascalesasthesquareofvalues,exaggeratingtheeffectoflargenumbers.Forexample,2,2takesup4timestheareaof1,1.Thisisageneralissuewithareagraphs,andareaishardtojudge–see"Cleveland'shierarchy".[24] Forexample,thealternatingdata9,1,9,1,9,1yieldsaspikingradarchart(whichgoesinandout),whilereorderingthedataas9,9,9,1,1,1insteadyieldstwodistinctwedges(sectors). Insomecasesthereisanaturalstructure,andradarchartscanbewell-suited.Forexample,fordiagramsofdatathatvaryovera24-hourcycle,thehourlydataisnaturallyrelatedtoitsneighbor,andhasacyclicstructure,soitcannaturallybedisplayedasaradarchart.[23][25][26] Onesetofguidelinesontheuseofradarcharts(orratherthecloselyrelated"polarareagraph")is:[26] youdon'tmindreadingstackedareasinsteadofpositionalongacommonscale(seeCleveland'sHierarchy), thedatasetistrulycyclic,notlinear,and therearetwoseriestocompare,onemuchsmallerthantheother Datasetsize[edit] Radarchartsarehelpfulforsmall-to-moderate-sizedmultivariatedatasets.Theirprimaryweaknessisthattheireffectivenessislimitedtodatasetswithlessthanafewhundredpoints.Afterthat,theytendtobeoverwhelming.[5] Further,whenusingradarchartswithmultipledimensionsorsamples,theradarchartmaybecomeclutteredandhardertointerpretasthenumberofsamplesgrows. Forexample,takethebattingstatstablecomparingMLB2021MVPShoheiOhtani,vsthestatsoftheleaguesaveragedesignatedhittersandsomeHallofFameplayers.Thesestatsrepresentthepercentageofhits,homeruns,strikeouts,etcperatbatofaplayer.Formoreinformationonwhateachstatusedinthetablerepresents,youcanrefertothisreferencebytheMLB.[27]WewillusethistablebelowtocreateRadarchartscomparingthe2021MVPbattingstatstotheleagueaveragesforDesignatedHittersandregularbatters,inanattempttovisualizeperformancemetricsandvisuallycometoaconclusionthatShoheioutperformedtheaverageplayer.NextwewillincludeadditionalsamplesintotheRadarchart,usingHallofFameplayersJackieRobinson,JimThome,andFrankThomastocompareShoheitoafewofthegreatestbattersofalltime.ThisRadarchartnotonlycangiveusintuitionofhowShoheicomparestothetophistoricalplayers,butwillalsoserveapurposeinshowingthelimitationsofhavingtoomanysamplesinaRadarchart. Target BA OBP SLG OPS HR% SO% BB% MLB 0.244 0.317 0.411 0.728 0.037 0.232 0.087 DH 0.239 0.316 0.434 0.75 0.047 0.256 0.093 ShoheiOhtani 0.257 0.372 0.592 0.965 0.086 0.296 0.15 JackieRobinson 0.313 0.41 0.477 0.887 0.0282 0.0582 0.151 JimThome 0.276 0.402 0.554 0.956 0.072 0.302 0.207 FrankThomas 0.301 0.419 0.555 0.974 0.063 0.17 0.203 WecanseeinFigure10howaradarchartcanbeeasilyinterpretedwhenthenumberofspokesandsamplesisrelativelysmall.WhenwecomparemoresamplesinFigure11,evenwithoutanareafillontheradarchart,itbecomesapparenthowdifficultitcanbecometointerpretormaketrade-offdecisions. Figure10.RadarchartdepictingMLB2021MVPShoheiOhtanibattingstatsvsleagueaverage Figure11.Comparingbattingstatsof2021MVPShoheiOhtanitotheleagueaverageandaselectfewHallofFamers.Herewecanseehowitbecomesmoredifficulttointerprettheradarchartwhenmoresamplesareadded Example[edit] DetailforthestarplotoftheCadillacSeville Thechartontheright[5]containsthestarplotsof15cars.Thevariablelistforthesamplestarplotis: Price Mileage(MPG) 1978RepairRecord(1=Worst,5=Best) 1977RepairRecord(1=Worst,5=Best) Headroom RearSeatRoom TrunkSpace Weight Length Wecanlookattheseplotsindividuallyorwecanusethemtoidentifyclustersofcarswithsimilarfeatures.Forexample,wecanlookatthestarplotoftheCadillacSeville(thelastoneontheimage)andseethatitisoneofthemostexpensivecars,getsbelowaverage(butnotamongtheworst)gasmileage,hasanaveragerepairrecord,andhasaverage-to-above-averageroominessandsize.WecanthencomparetheCadillacmodels(thelastthreeplots)withtheAMCmodels(thefirstthreeplots).Thiscomparisonshowsdistinctpatterns.TheAMCmodelstendtobeinexpensive,havebelowaveragegasmileage,andaresmallinbothheightandweightandinroominess.TheCadillacmodelsareexpensive,havepoorgasmileage,andarelargeinbothsizeandroominess.[5] Alternatives[edit] Mostsimply,onemayuseasimplelinegraph,particularlyfortimeseries.[23] Forgraphicalqualitativecomparisonof2-dimensionaltabulardatainseveralvariables,acommonalternativeareHarveyballs,whichareusedextensivelybyConsumerReports.[28]ComparisoninHarveyballs(andradarcharts)maybesignificantlyaidedbyorderingthevariablesalgorithmicallytoaddorder.[29] Anexcellentwayforvisualisingstructureswithinmultivariatedataisofferedbyprincipalcomponentanalysis(PCA). Anotheralternativeistousesmall,inlinebarcharts,whichmaybecomparedtosparklines.[29] Althoughradarandpolarchartsareoftendescribedasthesamecharttypes,[4]somesourcesmakeadifferencebetweenthemandevenconsidertheradarcharttobeapolarchart'svariationthatdoesnotdisplaydataintermsofpolarcoordinate.[30] Seealso[edit] Plot(graphics) Polarareadiagram Parallelcoordinates References[edit]  Thisarticleincorporates publicdomainmaterialfromtheNationalInstituteofStandardsandTechnologywebsitehttps://www.nist.gov. ^Porter,MichaelM;Niksiar,Pooya(2018)."Multidimensionalmechanics:Performancemappingofnaturalbiologicalsystemsusingpermutatedradarcharts".PLOSONE.13(9):e0204309.Bibcode:2018PLoSO..1304309P.doi:10.1371/journal.pone.0204309.PMC 6161877.PMID 30265707. ^NancyR.Tague(2005)Thequalitytoolbox.page437. ^Kolence,KennethW.(1973)."TheSoftwareEmpiricist".ACMSIGMETRICSPerformanceEvaluationReview.2(2):31–36.doi:10.1145/1113644.1113647.S2CID 18600391.Dr.PhilipJ.KiviatsuggestedatarecentNBS/ACMworkshoponperformancemeasurementthatacirculargraph,usingradiiasthevariableaxesmightbeausefulform.[…]Irecommendtheybecalled"KiviatPlots"or"KiviatGraphs"torecognizehisinsightastotheirimportance. ^ab"FindContentGapsUsingRadarCharts".ContentStrategyWorkshops.March3,2015.RetrievedDecember17,2015. ^abcdefNIST/SEMATECH(2003).StarPlotin:e-HandbookofStatisticalMethods.6/01/2003(Datecreated) ^Chambers,John,WilliamCleveland,BeatKleiner,andPaulTukey,(1983).GraphicalMethodsforDataAnalysis.Wadsworth.pp.158–162 ^Mayr,Georgvon(1877),DieGesetzmäßigkeitimGesellschaftsleben(inGerman),Munich:Oldenbourg,OL 23294909M,p.78.Linien-DiagrammeimKreise:Linechartsincircles. ^MichaelFriendly(2008)."Milestonesinthehistoryofthematiccartography,statisticalgraphics,anddatavisualization". ^MichaelFriendly(1991)."StatisticalGraphicsforMultivariateData".PaperpresentedattheSASSUGI16Conference,Apr,1991. ^Nowicki,HannahandMerenstein,Carter."RadarChartCS465:InformationVisualization-Spring2016".MiddleburyCollege.{{citeweb}}:CS1maint:multiplenames:authorslist(link) ^WondershareEdrawMax."WhatisaRadarChart?ExplainedwithExamples".WondershareEdrawMax. ^SpiderGraphs:ChartingBasketballStatistics ^SeeingData."Makingsenseofdatavisualizations".SeeingData. ^RonBasu(2004).ImplementingQuality:APracticalGuidetoToolsandTechniques.p.131. ^ModelSystemsKnowledgeTranslationCenter."EffectiveUseofRadarCharts"(PDF).ModelSystemsKnowledgeTranslationCenter. ^JohnMaguire."De-normalizedSpiderandRadarGraphs".KitmanLabs. ^Sowmya(29April2019)."WhyAndWhenToUseASpiderAndRadarChart?".Pluscharts. ^ab"Radar". ^WhatisaspiderChart? ^GenomeWideCharacterizationofGenomeOrganizationinMouseEScells,SupplementaryFile:GSE64881_segmentation_at_30000bp.passqc.multibam.txt.gz ^radar_factoryimplementation ^YouareNOTspiderman,sowhydoyouuseradarcharts?,byChandoo,September18th,2008 ^abcPeltier,Jon(2008-08-14)."RockAroundTheClock-PeltierTechBlog".Peltiertech.com.Retrieved2013-09-11. ^(Cleveland1984)harverror:notarget:CITEREFCleveland1984(help),summarizedathttp://processtrends.com/toc_data_visualization.htmArchivedMarch25,2010,attheWaybackMachine ^"ChartingaroundtheclockTheExcelChartsBlog".Excelcharts.com.2008-08-15.Retrieved2013-09-11. ^abClockThis ^"StandardStats".www.mlb.com.Retrieved2022-04-26. ^"QualitativeComparison".SupportAnalyticsBlog.11December2007.Archivedfromtheoriginalon2012-04-08. ^ab"InformationOcean:ReorderabletablesII:BertinversustheSpiders".I-ocean.blogspot.com.2008-09-24.Retrieved2013-09-11. ^"PolarCharts(ReportBuilderandSSRS)".MicrosoftDeveloperNetwork.RetrievedDecember17,2015. Externallinks[edit] WikimediaCommonshasmediarelatedtoRadarcharts. StarPlot–NIST/SEMATECHe-HandbookofStatisticalMethods vteStatistics Outline Index DescriptivestatisticsContinuousdataCenter Mean Arithmetic Cubic Generalized/power Geometric Harmonic Heinz Median Mode Dispersion Averageabsolutedeviation Coefficientofvariation Interquartilerange Percentile Range Standarddeviation Variance Shape Centrallimittheorem Moments Kurtosis L-moments Skewness Countdata Indexofdispersion Summarytables Contingencytable Frequencydistribution Groupeddata Dependence Partialcorrelation Pearsonproduct-momentcorrelation Rankcorrelation Kendall'sτ Spearman'sρ Scatterplot Graphics Barchart Biplot Boxplot Controlchart Correlogram Fanchart Forestplot Histogram Piechart Q–Qplot Radarchart Runchart Scatterplot Stem-and-leafdisplay Violinplot DatacollectionStudydesign Effectsize Missingdata Optimaldesign Population Replication Samplesizedetermination Statistic Statisticalpower Surveymethodology Sampling Cluster Stratified Opinionpoll Questionnaire Standarderror Controlledexperiments Blocking Factorialexperiment Interaction Randomassignment Randomizedcontrolledtrial Randomizedexperiment Scientificcontrol Adaptivedesigns Adaptiveclinicaltrial Stochasticapproximation Up-and-downdesigns Observationalstudies Cohortstudy Cross-sectionalstudy Naturalexperiment Quasi-experiment StatisticalinferenceStatisticaltheory Population Statistic Probabilitydistribution Samplingdistribution Orderstatistic Empiricaldistribution Densityestimation Statisticalmodel Modelspecification Lpspace Parameter location scale shape Parametricfamily Likelihood (monotone) Location–scalefamily Exponentialfamily Completeness Sufficiency Statisticalfunctional Bootstrap U V Optimaldecision lossfunction Efficiency Statisticaldistance divergence Asymptotics Robustness FrequentistinferencePointestimation Estimatingequations Maximumlikelihood Methodofmoments M-estimator Minimumdistance Unbiasedestimators Mean-unbiasedminimum-variance Rao–Blackwellization Lehmann–Scheffétheorem Medianunbiased Plug-in Intervalestimation Confidenceinterval Pivot Likelihoodinterval Predictioninterval Toleranceinterval Resampling Bootstrap Jackknife Testinghypotheses 1-&2-tails Power Uniformlymostpowerfultest Permutationtest Randomizationtest Multiplecomparisons Parametrictests Likelihood-ratio Score/Lagrangemultiplier Wald Specifictests Z-test(normal) Student'st-test F-test Goodnessoffit Chi-squared G-test Kolmogorov–Smirnov Anderson–Darling Lilliefors Jarque–Bera Normality(Shapiro–Wilk) Likelihood-ratiotest Modelselection Crossvalidation AIC BIC Rankstatistics Sign Samplemedian Signedrank(Wilcoxon) Hodges–Lehmannestimator Ranksum(Mann–Whitney) Nonparametricanova 1-way(Kruskal–Wallis) 2-way(Friedman) Orderedalternative(Jonckheere–Terpstra) VanderWaerdentest Bayesianinference Bayesianprobability prior posterior Credibleinterval Bayesfactor Bayesianestimator Maximumposteriorestimator CorrelationRegressionanalysisCorrelation Pearsonproduct-moment Partialcorrelation Confoundingvariable Coefficientofdetermination Regressionanalysis Errorsandresiduals Regressionvalidation Mixedeffectsmodels Simultaneousequationsmodels Multivariateadaptiveregressionsplines(MARS) Linearregression Simplelinearregression Ordinaryleastsquares Generallinearmodel Bayesianregression Non-standardpredictors Nonlinearregression Nonparametric Semiparametric Isotonic Robust Heteroscedasticity Homoscedasticity Generalizedlinearmodel Exponentialfamilies Logistic(Bernoulli) /Binomial /Poissonregressions Partitionofvariance Analysisofvariance(ANOVA,anova) Analysisofcovariance MultivariateANOVA Degreesoffreedom Categorical /Multivariate /Time-series /SurvivalanalysisCategorical Cohen'skappa Contingencytable Graphicalmodel Log-linearmodel McNemar'stest Cochran-Mantel-Haenszelstatistics Multivariate Regression Manova Principalcomponents Canonicalcorrelation Discriminantanalysis Clusteranalysis Classification Structuralequationmodel Factoranalysis Multivariatedistributions Ellipticaldistributions Normal Time-seriesGeneral Decomposition Trend Stationarity Seasonaladjustment Exponentialsmoothing Cointegration Structuralbreak Grangercausality Specifictests Dickey–Fuller Johansen Q-statistic(Ljung–Box) Durbin–Watson Breusch–Godfrey Timedomain Autocorrelation(ACF) partial(PACF) Cross-correlation(XCF) ARMAmodel ARIMAmodel(Box–Jenkins) Autoregressiveconditionalheteroskedasticity(ARCH) Vectorautoregression(VAR) Frequencydomain Spectraldensityestimation Fourieranalysis Least-squaresspectralanalysis Wavelet Whittlelikelihood SurvivalSurvivalfunction Kaplan–Meierestimator(productlimit) Proportionalhazardsmodels Acceleratedfailuretime(AFT)model Firsthittingtime Hazardfunction Nelson–Aalenestimator Test Log-ranktest ApplicationsBiostatistics Bioinformatics Clinicaltrials /studies Epidemiology Medicalstatistics Engineeringstatistics Chemometrics Methodsengineering Probabilisticdesign Process /qualitycontrol Reliability Systemidentification Socialstatistics Actuarialscience Census Crimestatistics Demography Econometrics Jurimetrics Nationalaccounts Officialstatistics Populationstatistics Psychometrics Spatialstatistics Cartography Environmentalstatistics Geographicinformationsystem Geostatistics Kriging Category  Mathematicsportal Commons WikiProject Retrievedfrom"https://en.wikipedia.org/w/index.php?title=Radar_chart&oldid=1090785956" Categories:ChartsStatisticalchartsanddiagramsHiddencategories:CS1German-languagesources(de)CS1maint:multiplenames:authorslistHarvandSfnno-targeterrorsWebarchivetemplatewaybacklinksArticleswithshortdescriptionShortdescriptionisdifferentfromWikidataWikipediaarticlesincorporatingtextfromtheNationalInstituteofStandardsandTechnologyCommonscategorylinkisonWikidata Navigationmenu Personaltools NotloggedinTalkContributionsCreateaccountLogin Namespaces ArticleTalk English Views ReadEditViewhistory More Search Navigation MainpageContentsCurrenteventsRandomarticleAboutWikipediaContactusDonate Contribute HelpLearntoeditCommunityportalRecentchangesUploadfile Tools WhatlinkshereRelatedchangesUploadfileSpecialpagesPermanentlinkPageinformationCitethispageWikidataitem Print/export DownloadasPDFPrintableversion Inotherprojects WikimediaCommons Languages DeutschEestiEuskaraفارسیFrançais한국어ItalianoMagyarNederlands日本語NorskbokmålPortuguêsSvenskaУкраїнська Editlinks



請為這篇文章評分?