Human Immune Responses to Adeno-Associated Virus (AAV ...

文章推薦指數: 80 %
投票人數:10人

Adeno-associated virus (AAV) is a small (25 nm), non-enveloped virus composed by an icosahedral capsid that contains a single-stranded, 4.7-Kb ... DownloadArticle DownloadPDF ReadCube EPUB XML(NLM) totalviews ViewArticleImpact SHAREON MoriyaTsuji ColumbiaUniversityIrvingMedicalCenter,UnitedStates ChengwenLi UniversityofNorthCarolinaatChapelHill,UnitedStates NathalieClement UnicornConsultations,UnitedStates Theeditorandreviewer'saffiliationsarethelatestprovidedontheirLoopresearchprofilesandmaynotreflecttheirsituationatthetimeofreview. Abstract Introduction HumanImmuneResponsestoWild-TypeAAV Post-TreatmentImmuneResponsesAgainstAAVVectors ImmuneResponsesAgainsttheTransgeneProduct ImmuneResponsestorAAVVectorsinClinicalTrialsAfterIntravenousInfusionofrAAVVectors Conclusion AuthorContributions Funding ConflictofInterest Acknowledgments References Checkforupdates Peoplealsolookedat REVIEWarticle Front.Immunol.,17April2020Sec.VaccinesandMolecularTherapeutics https://doi.org/10.3389/fimmu.2020.00670 HumanImmuneResponsestoAdeno-AssociatedVirus(AAV)Vectors GiuseppeRonzitti1*,David-AlexandreGross1andFedericoMingozzi2* 1INTEGRARE,Genethon,Inserm,UnivEvry,UniversitéParis-Saclay,Evry,France 2SparkTherapeutics,Philadelphia,PA,UnitedStates Recombinantadeno-associatedvirus(rAAV)vectorsareoneofthemostpromisinginvivogenedeliverytools.SeveralfeaturesmakerAAVvectorsanidealplatformforgenetransfer.However,thehighhomologywiththeparentalwild-typevirus,whichofteninfectshumans,poseslimitationsintermsofimmuneresponsesassociatedwiththisvectorplatform.Bothhumoralandcell-mediatedimmunitytowild-typeAAVhavebeendocumentedinhealthydonors,and,atleastinthecaseofanti-AAVantibodies,havebeenshowntohaveapotentiallyhighimpactontheoutcomeofgenetransfer.WhileseveralfactorscancontributetotheoverallimmunogenicityofrAAVvectors,vectordesignandthetotalvectordoseappeartoberesponsibleofimmune-mediatedtoxicities.Whilepreclinicalmodelshavebeenlessthanidealinpredictingtheoutcomeofgenetransferinhumans,thecurrentpreclinicalbodyofevidenceclearlydemonstratesthatrAAVvectorscantriggerbothinnateandadaptiveimmuneresponses.DatagatheredfromclinicaltrialsofferskeylearningsontheimmunogenicityofAAVvectors,highlightingchallengesaswellasthepotentialstrategiesthatcouldhelpunlockthefulltherapeuticpotentialofinvivogenetransfer. Introduction Adeno-associatedvirus(AAV)isasmall(25nm),non-envelopedviruscomposedbyanicosahedralcapsidthatcontainsasingle-stranded,4.7-KbDNAgenome.AAVsareDependovirus,astheyreplicateonlyinthepresenceofhelpervirusessuchasadenovirus,herpesvirus,humanpapillomavirusandvacciniavirus(1–4).AAVgenomeiscomposedbytwogenesrepandcap,flankedbytwopalindromicinvertedterminalrepeats(ITR).RepencodesforproteinsinvolvedinreplicationoftheviralDNA,packagingofAAVgenomes,andviralgenomeintegrationinthehostDNA(5).Capencodesforthethreeproteinsthatformthecapsid,VP1,2and3,andfortheassemblyactivatingprotein(AAP)andthenewlyidentifiedMAAP(5,6).Wild-typeAAVsnaturallyinfecthumansaround1to3yearsofage(7–9)andarenotassociatedwithanyknowndiseaseorillness(10).Afterinfection,AAVremainslatentinintegratedornot-integratedforms,untilahelpervirusprovidesthefunctionsnecessaryforitsreplication(5).InrecombinantAAVvectors(rAAV),theparentalvirusrepandcapgenesarereplacedwiththeDNAofchoiceflankedbythetwoITRs,andreferredtoasthetransgeneexpressioncassettewhenusedforgenetherapypurposes.rAAVvectorsareproducedefficientlybyseveralapproaches:transientdoubleortripletransfectionofmammaliancells(11,12);infectionofmammaliancelllineswithadenovirus(13)orherpessimplexvirus(14,15);andinfectionofinsectcellswithbaculovirus(16).Duringpackaging,repandcapgenesareprovidedintranstogetherwiththeadenoviralhelperproteinsrequiredforAAVgenomereplicationandpackaging(17,18).TripletransfectionofHEK293cellsisoneofthemostcommonlyusedmethodsforrAAVproduction.Itisbasedontheco-transfectionofthreeplasmids:onecontainingthetransgeneexpressioncassetteflankedbytheviralITRs,asecondpackagingplasmidexpressingtherepandcapgenesandathirdplasmidencodingforadenoviralhelpergenes(17,19).Historically,thepurificationofrAAVvectorswasperformedbyultracentrifugationintwosuccessivedensitygradients(17).Nowadays,thepurificationofAAVcapsidsbyaffinitychromatographyismorefrequentlyusedascolumnprocessismorescalableandyieldshighpuritypreparationsthatareamenableforclinicaluse(20).Basedonthepurificationmethod,rAAVpreparationsdifferintermsofcontaminantsandtheratioofemptytofullcapsids.AnimportantfocusinthefieldisthecontinuousimprovementoftherAAVmanufacturingprocessestoincreasevectoryieldsandpuritywhilereducingcosts(17,18,21,22).AsignificantconcernrelatedtothemethodsofproductionandpurificationistheimpactofrAAVpurityontheoverallvectorimmunogenicityprofile.OneobviousexampleofcontaminantisthepresenceofemptycapsidinrAAVpreparations(23). TheproteincapsidofrAAVaffectstheaffinityofthevectorforagiventissue.TransductionofacellbyrAAVvectorsrequirestheinteractionoftheviralcapsidwithsurfacereceptorsfollowedbyinternalizationandintracellulartraffickingthroughtheendocytic/proteasomalcompartment.Capsidproteinsthenmediatetheendosomalescapeandnuclearimport,andafteruncoating,thesinglestrandedgenomecarriedbyrAAVisconvertedtoadoublestrandedDNA.Thisconversionstepmayrepresentalimitingfactortogenetransferthatself-complementary(sc)AAVvectorscouldbypassatthecostofreducedpackagingcapacity(24).Differentfromwild-typeAAV,thegenomeofrAAVvectorsinefficientlyintegratesintothehostDNAandremainsmostlyepisomal(10,25,26).TransgeneexpressionfinallyresultsfromthetranscriptionofthemRNAandthesuccessivetranslationofthetransgenecodingsequence(Figure1)(27). FIGURE1 Figure1.Immunologicalbarrierstogenetransfer.(1)Pre-existingneutralizingantibodiestoAAVvectorsreducegenetransferefficacy.(2)CapsidscanberecognizedbyTLR2atthesurfaceofthecellsthustriggeringinnateimmuneresponses.(3)Afterendocytosis,theviralgenomecanstimulateTLR9-mediatedinnateimmunity.(4)Transgeneexpressionmaybeassociatedtothedevelopmentofanimmuneresponsethatimpactstheoutcomeofthegenetherapy.(5)CapsidproteinscanbedegradedbyproteasomeandpresentedonMHCclassI.(6)CapsidproteinscanbepresentedonMHCclassII.(7)AfterpresentationonMHCclassI,capsid-specificcytotoxicCD8+Tcellscancleartransducedcells.(8)AfterpresentationonMHCclassII,anti-capsidhumoralresponsepreventsfurthervectorre-administration. Todate,13differentAAVserotypesand108isolates(serovars)havebeenidentifiedandclassified(5,28).TherelativelylowcomplexityofAAVbiologyfacilitatesproductionofrAAVvectorscomposedbyatransgeneexpressioncassetteflankedbytheITRsfromserotype2(29)pseudotypedintoanyoftheavailableAAVcapsidvariants(5).ThisprocessallowsacomparisonofthepropertiesconferredtorAAVsbythecapsidproteinse.g.,tissuetargeting,potencyorimmunogenicity.Inparticular,thecapsidcompositioninfluencesthefirststepsoftransductioni.e.,interactionswithreceptorsontargetcellsandimpact,post-entrytraffickingandendosomalescape.Therefore,rAAVvectorsbearingdifferentcapsidshavedifferenttransductionpotential,butalsopotentiallydifferentimmunologicalproperties(5,30).Inrecentyears,severalapproacheshavebeenusedtoenablethegenerationofengineeredrAAVvectorsandasignificantexpansionoftherAAVvectortoolkit(31–34).WhiletheincreasingknowledgeonrAAVcapsidstructure-function(35)ledtothegenerationofcapsidvariantsbydirectmutagenesisofspecificaminoacidresidues,thedevelopmentofrAAVcapsidlibrariesandhigh-throughputscreeningmethodsresultedinthegenerationofavarietyofnovelcapsidsbydirectedevolution(31).Recently,twodifferentapproacheswerereportedtoovercomethelimitationsof“conventional”methodsofvectorevolution.BothmethodstakeadvantageofthelatestadvancementsinDNAsynthesisandsequencing,andareaimedatthereductionofthecomplexityoftheinitiallibrarytobescreenedeitherbyartificialintelligence(6)orbygraftingpeptidesderivedfromasubsetofproteinsinvolvedinspecificcellularfunctions(36).Regardlessofthemethodused,theisolationofnewrAAVvectorcapsidsrespondstoapreciseneedofincreasedtransductionefficacywithoptimizedbiodistributionandreducedimmunogenicity,atleastintermsofcross-reactivitywithpre-existingantibodies. Despitetheeffortsdedicatedtotheenhancementoftransductionefficacy,severalchallengesforclinicaluseofrAAVvectorsremain.Amongthem,vectorimmunogenicity,whichreflectstheinteractionsofrAAVswiththehostimmunesystem,isperhapsoftheutmostrelevancegivenitsimpactontheoutcomesoftreatmentintermsoftransgeneexpressiondurability,andtotheabilitytoeventuallyre-administerthevectorincaseoflossofefficacyovertime(Figure2).Here,wewilloutlinegeneralconceptonrAAVvectorimmunogenicity,andcomprehensivelydiscusstheclinicalexperienceinthecontextofsystemicvectoradministrationforliver-targetedgenetherapytrialsforhemophiliaandforthetreatmentofneuromusculardiseases. FIGURE2 Figure2.FactorsinfluencingAAVcapsidimmunogenicity.Theproteinsofthecapsid,thegenomeandthetransgeneproductarethemainpotentialimmunogeniccomponentsofAAVvectors.ProductionofdsRNAdrivenbythepromoteractivityofITRscanalsotriggerinnateimmunity.Additionalhost-dependentandvector-dependentfactorscanmodulatetheoverallvectorimmunogenicity.Thesefactorsaremostlypoorlyunderstood,althoughinnateimmunityactivatorslikeCpGandvectordoseappeartobeimportantdeterminantsofAAVvectorimmunogenicity. HumanImmuneResponsestoWild-TypeAAV HumoralImmunitytoAAV AlthoughAAVseroprevalencevariesgeographically,neutralizingantibodies(NAbs)thatrecognizevirtuallyallAAVserotypescanbefoundinalargeproportionofthehumanpopulation(rangingfrom30to60%).Successiveinfectionsmayexplainthehighprevalenceofanti-AAVNAbsinhumans(37–39),resultinginbroadcross-reactivityacrossAAVserotypesofdifferentorigins,includinghuman,mammalianorengineered.Regardlessofthegeographicregion,themostprevalentNAbsaredirectedagainstAAV2,followedbyAAV1(38).NAbsappearearlyinchildhoodwithapeakat3yearsofage,leavingashorttime-windowthatispotentiallyconvenientforgenetransferbetween7and11months,aftertheinfantloseshumoralprotectionbypassivetransferofmaternalantibodies(38). WhileproductionofAbsfromallfourIgGsubclasseshavebeenobserved,IgG1isthepredominantsubclassfoundinseropositiveindividualsand,ingeneral,titersofanti-AAVIgGantibodiescorrelatewiththethoseofanti-AAVneutralizingantibodies(40,41).Similarly,subjectsundergoinggenetransferwithAAVvectorsdevelopanti-AAVantibodiesfromallthefourIgGsubclasses(mainlyIgG1butalsoIgG2andIgG3)aswellasIgM,concurringtotheresultinghighneutralizingtiters(42).Interestingly,someindividualscarrynon-neutralizingIgGbindingtotheAAVcapsid(43).Whileevenlow-titerNAbsareassociatedwithefficientvectorneutralizationinvivo(44–46),thepresenceofbindingnon-NAbsappeartoenhancerAAVtransductionefficacy,atleastinsometissues(43).Pre-existinganti-AAVantibodiesinindividualsreceivingrAAVvectorsarebeinginvestigatedasapotentialsourceoftoxicityrelatedtocomplementactivation(47)althoughadirectinteractionof rAAVvectorswithcomplementproteinswasalsoreported(48,49). TCellResponsestoAAV EarlyclinicaltrialsofgenetransferwithrAAVdemonstratedthepotentialnegativeimpactofTcell-mediatedimmunityontheoutcomeofgenetransfer(45,50,51).Sincethen,researcheffortshavebeenfocusedonthestudyofpre-existinganti-AAVcellresponseandonthedevelopmentofmethodstodetectandmonitorcell-mediatedimmunityinAAV-basedgenetransfer(52–55). DifferentassaysweredevelopedtoestimatethefrequencyofTcellsspecificforAAVinhumans,includingIFN-γELISPOT(56–58)andflowcytometrybasedassays(52,56,58).Ingeneral,AAV-specificcellularresponsesarelessfrequentlyobservedthanhumoralresponses,probablyduetothelowerassaysensitivityandtothefactthatcapsid-reactivelymphocytesarefoundinlowfrequencyinperipheralblood.Thismayexplainwhydifferentindependentstudiesreportedalackofcorrelationbetweenpre-existingcellularandhumoralimmuneresponses(50,56,58).Indeed,efficientAAV-specificTcellsdetectioninperipheralbloodandspleenrequiresseveralroundsofinvitroexpansionwithpeptidelibrariesderivedfromthecapsidVP1(50,56).Alternatively,FACSstainingafteranAAVspecifictetramer-mediatedmagneticenrichmentcanbeusedtoincreasethedetectionofAAV-specificTcells(59).Recently,weshowedacorrelationbetweenanti-AAVantibodiesandcirculatingAAV2-specificmemoryCD8+TcellssecretingTNF-α(52),suggestingthatIFN-γ,whichiscurrentlybroadlyusedasamarkerofcapsid-specificTcellactivation,maynotbetheonlycytokinethatneedstobetrackedforimmunomonitoringingenetransfertrials. Asobservedwithhumoralresponses,capsidTcellresponsesarelessfrequentinyoungchildren(<5years)comparedtoolderhealthydonors(56,60),suggestingthatanti-AAVimmuneresponsesmayariseduringinfancyafterAAVinfection,andpersistthroughoutlifetimeasapoolofmemoryTcellsinsecondarylymphoidorgans.Consistently,differentiationmarkersmeasuredatsinglecelllevelbyflowcytometryindicatedthatthemajorityofAAV-specificTcellsfoundinhumanspresentamemoryphenotype(50,52,53,58).Afterexposuretothecapsidantigen,AAV-specificmemoryTcellsproduceIFN-γ,IL-2andTNF-α,andacquireacytotoxicphenotypemeasuredbytheexpressionofgranzymeBandCD107adegranulationmarkers(52,53,56,58).Inadditiontothat,twopatternsofcellularresponsestoAAVthataredependentontheserologystatusofpatientswererecentlyidentifiedbyourlaboratory(61).Exposureofhumanperipheralbloodmononuclearcells(PBMCs)obtainedfromAAV-seropositivedonorstocapsidepitopesinducedaneffectormemoryphenotypeinactivatedCD8+Tcells,withsecretionofTNF-α,andexpressionofgranzymeBandCD107a(52).Inseronegativepatients,transientactivationofNaturalKiller(NK)cells,butnotnaiveCD8+Tcells,wasobserved.TheroleoftheseactivatedNKcells,whichsecretebothIFN-γandTNF-αwithoutacytotoxicphenotype,inthecontextofgenetransferremainsunknown. Post-TreatmentImmuneResponsesAgainstAAVVectors InnateImmunityofrAAV VectorsderivedfromAAVareconstitutedbyaproteincapsid,whichishighlysimilar,ifnotidentical,tothatofwildtypeAAV,asingleordoublestrandedDNAgenomethatdoesnotexpressanyviralproteins,andtheinvertedterminalrepeats(ITR),GC-richregionsofthesinglestrandedgenomewithacomplexsecondarystructure.BoththecapsidandtheDNAcomponentsofrAAVmayconcurintheactivationofinnateimmunityalongwithotherhost-specificfactors(Figures2,3).Inadditiontothat,productionandpurificationofthevectorsleadtothepresenceofDNA-depletedAAVcapsids(emptycapsids)andbothDNAandproteincontaminants.Incomparisontootherbiologicaldrugssuchasmonoclonalantibodies,rAAVarequitecomplexandthepredictionoftheimmune-mediatedtoxicitiesaftervectoradministrationremainselusive,partiallybecauseofthelackoffullypredictiveanimalmodels(62–64). FIGURE3 Figure3.Immunomonitoringingenetransfer.Abroadrangeofassayscanbeimplementedforimmunomonitoringingenetransfertrials.Serumsamplesorotherrelevantsampleslikecerebrospinalfluid(CSF)canbeusedtomonitormarkersofinnateimmunityaswellastodetermineantibodytitersbeforeandaftervectoradministration.ThecellfractionofperipheralbloodisfrequentlyusedforbothBandTcellassaysbyELISPOT.MorecomplextechnologiescanalsobeusefulforexampletotrackTcellclonesviaTCRsequencing,ortodefinetranscriptomechangesatthesinglecelllevel.Additionally,highcontentflow-basedassaycanbeappliedforthesimultaneouscharacterizationofalargenumberofsurfaceandintracellularmarkers.WhilealotofinformationcanbegatheredbystudyingimmuneresponsetoAAVinperipheralblood,accesstotissuesamplescouldpotentiallyhelpbetterdefinethenatureofthelocalimmuneresponseinatransducedtissueaswellasitsimpactonvectorgenomepersistence.AsmanyquestionsremainonAAVimmunogenicity,thefieldofAAVgenetherapyresearchneedsfurthereffortstoresolvethecomplexityofcapsid-relatedimmuneresponses.Theharmonizationofpatientimmunomonitoringusingstandardguidelines,andqualitycontrolstocheckimmuneassayperformanceovertimeandacrossclinicaltrials,wouldgreatlyfacilitatethecomparisonofdata,andsubsequentlytheunderstandingofthecomplexityofanti-AAVimmuneresponses. Inrecentyears,significantresearcheffortswerefocusedonestablishingacausativeroleofinnateimmunityintheimmune-mediatedtoxicitiesobservedinhumans.However,theintrinsiccharacteristicsoftheinnateimmunesystem,together,andthelackofclinicalevidenceofinnateimmunesystemactivationstillrepresentachallengetowardtheappraisaloftheinnateimmunityroleintheimmune-mediatedtoxicitiesobservedingenetherapytrials. Innateimmunityisthefirstbarrieragainstpathogensasitmountsrapidlyanddoesnotrequireaspecificadaptationtothepathogens.Innateimmuneresponsedependsontherecognitionofpathogen-associatedmolecularpatternsbythepatternrecognitionreceptors(PRRs)expressedbyimmunecells.Themolecularrecognitionofviralnucleicacids,membraneglycoproteins,orevenchemicalmessengersbyPRRsleadstothenucleartranslocationofNuclearFactorκB(NF-κB)andInterferon-RegulatoryFactor(IRF),transcriptionfactorswithacentralroleintheexpressionofpro-inflammatorycytokines,ortypeIinterferons(IFNs),respectively(65). InthecontextofrAAV-mediatedgenetransfer,preclinicalstudiessupportedtheimportantroleoftypeIIFNsintheinductionofCD8+Tcellresponses.Inparticular,blockingtheactivationofinnateimmuneresponsespreventedbothcytotoxic(66,67)andhumoral(52)anti-capsidresponsesinvivo. MostofthedataontheroleoftypeIIFNsinrAAVvectorsimmunogenicitywereobtainedinthecontextofliver-targetedgenetransfer.Theliverrepresentsauniqueimmunologicalenvironment,characterizedbythepresenceofresidentimmunecellstogetherwithbothspecializedandnon-specializedantigenpresentingcells(APCs).Innon-parenchymallivercells,includingKupffercellsandliversinusoidalendothelialcells(LSECs),innateimmunityactivationafterlivergenetransferwithrAAVmainlyoccursthroughbindingtoTLR2expressedonthecellsurface(68).TherAAVdouble-strandedDNAgenome,andinparticularitsunmethylatedCpGmotifs,mayberecognizedbytheendosomalTLR9ineitherKupffercells(69),peripheralplasmacytoidDCs(pDCs)(66,70)ormonocyte-derivedDCs(71).TLR9engagementwasassociatedwithenhancedactivationofAAV-specificCD8+TcellduetoincreasedantigenpresentationonclassImajorhistocompatibilitycomplex(MHC)(54,66,72). Anintriguinghypothesisisthat,inadditiontothevectorDNAgenome,double-strandedRNA(dsRNA)mayparticipatetotheinductionofinnateimmunitytorAAV(73).Accordingtothisstudy,dsRNAsareproducedbythepromoteractivityoftheITRs.AccumulationofdsRNAswould,inturn,stimulatestheMDA5sensorinhumanhepatocytestransducedwithAAV,leadingtotheexpressionoftypeIIFNs.Interestingly,theblockadeofMDA5decreasedtheIFNresponseandimprovedtransgeneexpressionintransducedcellsinvitro(73).Althoughthishypothesisisnotyetsupportedbyclinicaldata,itmayexplainwhycellularresponsesaresometimesinitiatedweeksaftervectoradministrationinclinicaltrials,atimeframethatisconsistentwiththedsRNAsynthesisinvivo(51,74). AdaptiveImmuneSystemActivationFollowingrAAVAdministration Theinductionofanadaptiveimmuneresponserequiresalongertimethaninnateimmunityandisconsideredasthesecondbarriertowardpathogens.Ontheotherhand,adaptiveimmuneresponsesareantigen-specificandeliminatepathogenswhilegeneratinganimmunologicalmemory. TandBlymphocytesareactivatedafterthemolecularrecognitionofanantigenpresentedbyAPCs(75).Afteractivation,lymphocytesexpandanddifferentiateintoeffectorcellsandspecificallyinactivateorclearantigensthroughtheinductionofhumoralorcytotoxicresponses.Whenthelevelsofcirculatingantigenarereducedbythemountingimmuneresponse,memoryTandBlymphocytesaregeneratedandcanrespondtosuccessiveantigenicstimulationinamoreefficientandfastermanner(75).AfterrAAVvectoradministration,bothtransducedcellsandprofessionalAPCspresentcapsid-derivedepitopestocytotoxicCD8+TcellsviaMHCclassI(50,56,66,76).ActivatedCD8+TcellsmayclearrAAV-transducedcellsthusinducinginflammationinthetargetorgan,affectingthegenetransferoutcome(45,51,77,78).Theconcurrentpresentationofcapsid-derivedMHCclassIIepitopesbyprofessionalAPCsactivatesCD4+Thelpercells,whichfacilitatehumoralandcell-mediatedimmuneresponses(67).Indeed,experiencefromclinicaltrialsindicatethatrAAVvectorsadministrationleadstothedevelopmentofanti-AAVIgGandNAbs(42),likelypreventingvectorreadministration.Administrationofimmunomodulatoryregimens(79)or,B-celldepletionpriortogenetransfer,(80)havebeeneffectiveinblockinghumoralimmuneresponsestorAAVinthepreclinicalsetting.Tothisaimrituximabincombinationwithrapamyciniscurrentlybeingtestedinhumansasastrategytoenablevectorre-dosing(NCT02240407). Clinicalexperienceindicatesthat,tosomeextent,rAAVvectorimmunogenicityisdose-dependent(81,82).Lowvectordosesappeartobemanaged,inmostcases,byshortcoursesofcorticosteroidsorothermildimmunosuppressiveregimenswithrescueoftransgeneexpression(82).Accordingly,adose-dependentincreaseinAAV-antigenpresentedonMHCclassItogetherwithhigherCD8+Tcellsactivationwasreportedinvitro(76,83).Nevertheless,deleteriouseffectsofanti-capsidcellularresponse,andinparticulartheveryslowonsetoftheTcellresponse,arenotfullyrecapitulatedbyanimalmodels.ThishaspreventedtheinvestigatorstoformulatepredictivemodelsofrAAVvectorimmunogenicity,andtosomeextenthinderedthedevelopmentofspecificimmunomodulatoryprotocolsspecificforgenetransfer. ImmuneResponsesAgainsttheTransgeneProduct Alargepartofthegenetherapystrategiesformonogenicdiseasesaimatthereplacementofamutatedgenewithacorrectedcopytorestoreitsfunctionandcorrectthediseasephenotype.Thepotentialdevelopmentofanimmuneresponseagainstthetransgeneisdependentonseveralvariables,includingthetissuetargetedwithgenetransfer,thehostgeneticbackground,andtheextentoftheresidualexpressionofthedonatedgene.Genetransferinacontextofmissensemutationsandresidualendogenousexpressionofthefulllengthproteinisunlikelytoinduceanti-transgeneimmuneresponses,althoughsomepreclinicalstudiessuggestthatevensingleaminoacidvariationscanberecognizedbythehostimmunesystem(84).Conversely,genetransferinthecontextofstopmutationswithnoresidualproteinexpression,ispotentiallymorelikelytoresultinanti-transgeneimmunityduetotheabsenceofcentraltoleranceagainstthetransgeneproductitself. Intheclinicalsetting,anti-transgeneimmuneresponsesweredocumented,sofar,inonlyfewclinicaltrials,mostlyafterintramusculardeliveryofrAAVvectors.Inparticular,evidenceofTcell-mediatedanti-transgenecytotoxicTcellresponseswasdocumentedinaphaseI/IItrialofintramusculargenetransferinDuchennemusculardystrophypatients(85).Inthistrial,AAV-mediatedtransferofamini-dystrophintransgeneresultedinpoorexpressionandwasassociatedwiththedevelopmentofTcellresponsesdirectedagainsttransgeneepitopesor,possibly,intherecallofpre-existinganti-dystrophinTcellsresponse.Similarly,decreasedtransgeneexpressionandtransgene-specificcytotoxicTcellswerereportedafterintramusculardeliveryofalpha-1antitrypsinwithrAAVvectorinonesubject(86),althoughmostoftheclinicaltrialparticipantsachievedlong-termexpressionofthetransgene(87).Inotherclinicaltrials,theimpactofimmuneresponseonthetreatmentoutcomeswaslessclear.Finally,inaphaseI/IItrialofintracranialdeliveryofarAAV5vectorformucopolysaccharidosistypeIIIB,anti-transgeneTcellswerealsoreported(88).Takentogether,theclinicaldatapresentedsuggestthatdisease-specificconditionse.g.,theongoinginflammationinmuscledystrophies(85),arelikelytoincreasetransgeneimmunogenicityaftergenetransfer. Theapparentinconsistencybetweenthepotentialimmunogenicityofthetransgeneandthelownumberofactualreportsofanti-transgeneimmunogenicresponsescouldpossiblybeexplainedalsobythefactthatmostoftheclinicaltrials,sofar,wereperformed:(i)insubjectsalreadyexposedtoproteinreplacementtherapypriortogenetransfer;(ii)insubjectswithresidualendogenousexpressionofthegenetargetedwithgenetransfer;(iii)bygenetransferrestrictedtoimmune-privilegedcompartmentsliketheeye,theliverorthebrain;and(iv)whengenetransferwasadministeredtogetherwithanimmunomodulatoryregimen. Oneimportantdeterminantofanti-transgeneimmuneresponsesisthetissuedistributionoftransgeneexpression.TheselectivityofgeneexpressionforagiventargettissueistheresultofthecombinedtropismoftheAAVcapsid,therouteofvectoradministrationandthespecificityofthepromoterincludedinthetransgeneexpressioncassette.Ingeneral,intramuscularadministrationandstrongubiquitouspromotersaremorelikelytoinduceanti-transgeneimmuneresponsesthansystemicadministrationandtissue-specificpromoters(89,90).Anotherlayerofcomplexityintheevaluationofthepotentialimmunogenicityofgenetransferisthat,insometissues,suchasmuscle(91),thepresenceofinflammationduetotheunderlyingdiseasemightresultinahigherriskoftriggeringtransgene-directedimmuneresponses.Conversely,intissuesthataredefinedasimmune-privilegedperseduetothepresenceofbarriersthatreduceantigenpresentationandimmunesystemcellstrafficking(e.g.,theeyeorthenervoussystem)ortotheirparticularimmunologicalmilieu(e.g.,theliver),theoverallriskofencounteringanti-transgeneimmuneresponsesislow. Theliver,duetotheconstantexposuretonon-selfantigens,haspeculiarimmunologicalpropertiesthatpreventuncontrolledimmuneactivation.SeveralstudiesofgenetransferwithrAAVinbothsmallandlargeanimalsindicatedthathepatocyte-restrictedtransgeneexpressioninducedarobust,antigen-specificperipheraltolerance(60,92,93).Inanimalmodels,liver-inducedimmunologicaltolerancehasbeenexploitedtocounteractdeleteriousimmuneresponsesinducedbygenetransfertargetingmoreimmunogenictissues,suchasthemuscle(89,94).Thedifferentantigenpresentingcells(APCs)residentintheliverareinvolvedinthetolerogeniceffectafterlivergenetransfer.Inparticular,Kupffercells,themacrophagesresidentintheliver,seemtohavealessmaturephenotypecomparedtootherprofessionalAPCs(95,96).This,togetherwiththesecretionoftheanti-inflammatorycytokineIL-10(97–99)byKupffercellsleadstopoorTcell-activation.AntigenpresentationthroughMHCclassIexpressedontohepatocyteshasbeenassociatedwithincompleteCD8+Tcellactivationandincreasedexhaustionandapoptosis(89,93,94,100–103).Liversinusoidalendothelialcells(LSECs)canalsoactasprofessionalAPCsandpromotetolerancethroughtheinductionofTregulatorycells(Tregs)(104,105).TregsplayanessentialroleintoleranceinductionafterlivergenetransferasdemonstratedbytheincreasedtransgeneimmunogenicityobservedafterTregsdepletion(60,89,92,106).Consistently,increasedTregsexpansionbyrapamycintreatment,favoredtheinductionofliver-mediatedtoleranceeveninthepresenceofpre-existinganti-transgeneimmunity(107,108).OthermechanismsliketheinductionofCD8+regulatoryTcells(109),thedegradationofTcellsinhepatocytes(110),andtheCD4+Tcellanergy(111)wereproposedintheestablishmentandmaintenanceoflivertolerance. ImmuneResponsestorAAVVectorsinClinicalTrialsAfterIntravenousInfusionofrAAVVectors LiverGeneTransfer–TheExperienceWithHemophiliaB ThelargestsetofclinicaldataavailableonrAAV-mediatedgenetransferforthetreatmentofliverdiseasesderivesfromhemophiliaBstudies.HemophiliaBisanidealtargetforrAAVgenetherapyfordifferentreasons.First,thetransgene,humancoagulationfactorIX(hFIX),canbeexpressedinavarietyoftissuesincludingmuscleandliver,thelatterbeingitsnaturalsiteofsynthesis,andlowlevelsoftransgeneexpression(around5%ofnormal)aresufficienttogreatlyreducetheimpactofthediseaseonthequalityoflifeofthepatients.AnotherimportantadvantageisthathFIXissmalland,basedontheexperiencewithproteinreplacementtherapy,seemstohavearelativelylowerimmunogenicitypotentialcomparedto,forexample,humancoagulationfactorVIII.Finally,thediseaseisverywellcharacterized,smallandlargeanimalmodelsofhemophiliaBareavailable,andmethodsandendpointstoevaluatetheefficacyofagiventreatmentarewellestablished. ThefirstdemonstrationthathFIXcanbesecretedbyhumanhepatocytesfollowingrAAVvector-mediatedgenetransferwasobtainedinaseminalclinicaltrialwhere7subjectswithseverehemophiliaBreceivedthroughthehepaticarteryasingle-strandedrAAV2vectorcarryingthehFIXtransgeneunderthecontrolofaliver-specificpromoter(45).Theclinicaltrialwasdesignedwiththreeincreasingdosecohortsof8×1010vg/kg,4×1011vg/kg,and2×1012vg/kg,respectively.TherapeuticlevelsofhFIXexpressionwerereportedonlyinthefirstpatientwhoreceivedthehighestvectordose.However,differentlyfromanimalmodelsthatshowedastableexpressionofhFIXovertime(51,112),inhumans,transgeneexpressionstartedtodecline4weeksaftervectorinjection.Thisdeclinewasassociatedwithaself-limitedincreaseinlivertransaminasesandthedetectionofcirculatingAAV-specificCD8+Tcells(45,50).Inasecondpatientdosedatthe2×1012vg/kgdose,notransgeneexpressionwasobservedpossiblyduetothepresenceofananti-AAV2pre-existinghumoralimmuneresponse(45). ThisfirstclinicaltrialdemonstratedthattherAAVvectorsweresafeandefficaciousinlivertargeting,althoughtransgeneexpressionwasonlytransient.Bothsmallandlargeanimalmodelsusedinpreclinicalresearchfailedtopredictthisnegativeoutcomelinkedtoananti-AAVcapsidcellularresponse.Nevertheless,thisclinicaltrialprovideduniqueinformationforthefutureuseoftherAAVtechnologyforgenetransferinhumans.AsecondclinicaltrialwasthencarriedoutusingrAAV8serotypefortheexpressionofhFIX(81).Theimprovedtransductionofhepatocytesachievedwiththisserotype(113)wascombinedwithaself-complementarygenomeandacodon-optimizedtransgenesequencetooptimizetheexpressionintheliver(114). Inthissecondtrial,participantswerescreenedforpre-existinghumoralresponseagainstAAV8andonlyseronegativepatientswereincluded.Threedosesofthevectorwereinfusedthroughaperipheralveinrangingfrom2×1011vg/kgto2×1012vg/kg.Differentlyfromtheprevioustrial,hFIXexpressionwasdetectableandreached1–4%ofnormalinthelowandmiddosecohorts(81).Atthehighestdose,inthefirstsubjectdosedfromthiscohort,8weekspost-infusionthetherapeutichFIXlevels(approximately8–10%ofnormal)startedtodeclineand,similarlytotheprevioustrial,anelevationofliverenzymesandanincreaseincirculatingcapsid-specificTcellswasdetected.Ataperingcourseofsteroidswasadministeredtocontroltheliverenzymeelevation,whichallowedforrescueoftransgeneexpression(81).Oftheadditionalparticipantsenrolledinhighdosecohort,atotalof6,4developedatransienttransaminitisthatrapidlyresolvedaftertransienttreatmentwithprednisolone(74).Inthisstudy,inmostparticipants,andinparticularthosefromthehighdosecohort,asignificantreductioninannualizedbleedingepisodesintheabsenceofrecombinanthFIXprophylaxiswasreported(74)withastabletransgeneexpressiondocumentedforupto10years(115). ResultsobtainedinathirdclinicaltrialforhemophiliaBfurthersupporttheroleofthetotalcapsiddoseasadeterminantofrAAVvectorimmunogenicity.Subjectsseronegativeforanti-AAVantibodiesreceivedarelativelylowdose(5×1011vg/kg)ofanAAVvectorexpressingahyperactivevariantofhFIX(hFIX-R338L).Atthisdose,only2outof10participantshadanelevationofliverenzymes,whichwassuccessfullycontrolledwithcorticosteroids.InthisstudyrAAVadministrationresultedintherapeutictransgeneexpressioninallenrolledsubjects(78). rAAV5wasalsousedtoexpresshFIXinhepatocytesofhemophiliaBpatients.Thisvector,producedinabaculovirussystem,wasinjectedatdosesupto2×1013vg/kg,in10hemophiliaBpatients(116).TherapeuticlevelsofhFIXwereobservedformostofthetreatedpatients.ALTelevation,whichwasreportedin3outof10patients,wasneitherassociatedwithTcellsactivationdetectedbyELISPOT,norcorrelatedwiththepresenceofpreexistingNAbs,andwastreatedbycorticosteroidswithnomeasurabledecreaseinhFIXtransgeneexpression.Similarly,inaclinicaltrialforhemophiliaA,theinfusionofupto6×1013vg/kgofarAAV5vectorexpressinghumancoagulationfactorVIIIresultedinALTelevationinseveralenrolledsubjects(117).Theimpactofliverenzymeelevationontransgeneexpressioninthisstudyisbeingdebated,althoughadecreaseinfactorVIIIlevelshasbeendetectedinseveralparticipantsfollowedatlong-term(118). CorticosteroidtreatmentgiveninresponsetoALTelevationusuallycontrolledtheanti-AAVvectorimmuneresponseandstabilizedtransgeneexpression.However,insomecasesthisapproachhasfailedtocontroltheanti-capsidimmuneresponses.Oneexampleisaclinicaltrialinwhich7hemophiliaBsubjectsreceivedascAAV8vectorexpressingthehyperactivehFIX-R338Lvariant(119)atdosesrangingfrom2×1011vg/kgto3×1012vg/kg(NCT01687608).Sustainedtransgeneexpression(hFIXactivityofabout20%)wasreachedinonlyoneparticipant,whileallotherpatientsenrolledinthetrialhadeithernoexpressionorlosttransgeneexpressiondespitecorticosteroidtreatmentwithin5to11weekspostvectorinfusionwithoutanyevidenceofanti-hFIXantibodiesformation(120).VectorimmunogenicitywaspossiblydependentontheelevatedCpGcontentofthetransgeneexpressioncassette.Indeed,transductionofprimaryhumanlivercellswiththisvectorinducedthesecretionofmoreTh1-orientedchemokinescomparedtoaCpG-nullversionofthesamevector(121).Inasecondclinicaltrial,rAAVRh10serotypeexpressinghFIXwasadministeredtosixseronegativehemophiliaBpatientsatdosesof1.6×1012and5×1012vg/kg(122).AtransientexpressionofhFIXwasreportedalsointhisstudy.Aftervectoradministration,5outof6injectedindividualshadALTelevationassociatedwithlossofthetransgeneexpressiondespitecorticosteroidtreatment.Fourofthemdemonstratedlowanti-capsidandanti-hFIXresponseasmeasuredbyIFN-γELISPOTassay,possiblyreflectingthehighdosesofcorticosteroidstheyreceived.Subject6hadahigherALTelevation,associatedwithastrongCD4+IL-2+IFN-γ+TcellresponseagainstanepitopespanningthehFIXmutation,andincreasedinflammatorycytokinesintheserum(123),however,noanti-hFIXhumoralimmuneresponsewasdocumentedinthissubject. Takentogether,theclinicalexperienceaccumulatedwithclinicaltrialsforHemophiliaBindicatethatmildimmuneresponsestothevectormaycleartransgeneexpressionfromtheliver.Theseimmuneresponsesarecontrolledbycorticosteroidtreatmentinmostofthecases.However,transientexpressionofthehFIXtransgenewasobservedregardlessofcorticosteroidtreatmentinsomeclinicaltrials,potentiallyduetoahigherintrinsicimmunogenicityofthevectorsused. AAVGeneTransferforNeuromuscularDiseases Neuromusculardiseasesofgeneticoriginareamultitudeofdiseasesthatareheterogeneousintermsofpathophysiology,tissuesinvolved,ageofonset,andclinicalmanifestations.ClinicalexperienceaccumulatedongenereplacementwithrAAVvectorsindicatesthatregardlessofthedisease,muscleorcentralnervoussystemtargetingrequireshighvectordosesintherangeof1×1014vg/kg.Inrecentyears,theimprovementsinlarge-scalerAAVvectormanufacturingallowedfordeliveryofthelargedosesofAAVvectorsneededinpatientswithneuromusculardiseases. OneofthemostexcitingresultsinthefieldofrAAV-mediatedgenetransferwastherecentapprovalofZolgensma(Avexis,Novartis)forthetreatmentofspinalmuscularatrophy(SMA)typeI(124).Theefficacyofthisdrugwasinitiallyprovedinapivotalclinicaltrialinvolving15patientswithSMAtypeI(125).ArAAV9expressingtheSMN1geneunderthecontrolofaubiquitouspromoterwasinfusedintravenouslyatdosesof6.7×1013and2.0×1014vg/kg.Inthefirstpatientdosedatthelowvectordose,arobustALTelevation(31timesabovetheupperlimitofanormalrange)wasreportedalthoughitwascontrolledbycorticosteroids.Afterthisfirstobservation,prophylacticcorticosteroidstreatmentwasapplied(30days,starting1daybeforevectorinfusion)andALTelevationwasreportedonlyin3patientswithinthehighdosegroup(125).Atthesametime,highpercentageofcapsid-specificTcellsweredetectedinperipheralbloodbyIFN-γELISPOT(126).However,neithertheALTelevationnorthepresenceofcapsid-specificTcellswasassociatedwithreducedvectorefficacy.Theexcellentefficacyprofileandthemildadverseeventsreportedinthisfirstclinicaltrialswereconfirmedatlong-term(125,127,128)andalsoinaphaseIIItrial(ClinicalTrials.gov:NCT03306277).Basedontheseresults,adose-findingclinicaltrialwaslaunchedtoevaluatethesafetyandefficacyofintrathecaladministrationofZolgensmainSMAtype2patients(ClinicalTrials.gov:NCT03381729).Sofar,31patientsreceivedthetreatmentatthethreevectordosesrangingfrom6×1013to2.4×1014totalvectorgenomes(129).Resultsofthefirsttwodosecohortsindicatedanameliorationofthemotorfunctionwithmildadverseevents.Despitecorticosteroidstreatment,elevatedALTandASTwerereportedinonepatientandwereconsideredrelatedtothetreatment.However,thistrialwasplacedonpartialholdbytheFDAafterthedetectionofpossibletoxicityindorsalrootganglianeuronsintwoindependentpreclinicalstudiesperformedinlargeanimals(130,131).Importantly,thisunexpectedtoxicitywasneverreportedinpatientsthatreceivedthesamevectorbyperipheralvein(125)orinadifferenttrialofrAAVgenetransferforgiantaxonalneuropathy(ClinicalTrials.gov:NCT02362438)inwhichintrathecaldeliveryofrAAV9wasassociatedwithtransientcorticosteroidsandalongercourseoftacrolimusandrapamycin. AdditionalinformationontheadministrationofhighdosesofrAAVinpediatricpatientsderivesfromaPhaseI/IIclinicaltrialforX-linkedmyotubularmyopathy(MTM,ClinicalTrials.gov:NCT03199469)andthreestudiesforDuchennemusculardystrophy(DMD,NCT03375164,NCT03362502,NCT03368742).IntheMTMstudy,dosesupto3×1014vg/kgofarAAV8vectorexpressingtheMtm1transgeneunderthecontrolofamuscle-specificpromoterwereadministeredtopatientslessthan5yearsold(132).Clinicallymeaningfulimprovementtogetherwithrobustproteinexpressionandrecoveredhistologywerereported.Inthisstudy,aprophylacticregimenofcorticosteroidwasapplied.Althoughthevectorwasgenerallywelltolerated,increasedliverenzymes,creatininekinaseandtroponinwerereported.Bothanti-transgeneandanti-capsidimmuneresponsesweredetectedaftervectoradministration,althoughitisunclearwhetherthereisanycorrelationwiththeclinicaloutcomes.Furtherstudiesandlong-termfollow-upofparticipantswillhelptoelucidatetherelevanceofthemeasuredimmuneresponses. VariableoutcomesacrosstrialswerereportedinthecontextofsystemicrAAVvectordeliveryforDMD.OneclinicaltrialusedarAAVrh74vectortoexpressamicro-dystrophintransgenewiththeMHCK7musclespecificpromoter(ClinicalTrials.gov:NCT03375164).Inthistrial,3outof4DMDpatientswhoreceivedadoseof2×1014vg/kghadelevatedliverenzymes,whichwerecontrolledbyincreasingcorticosteroiddose(133).Sofar,nodatawasprovidedbythesponsoronspecificresponsesagainstthecapsidorthetransgene,althoughsustainedtransgeneexpression,togetherwithameliorationofcirculatingcreatinekinaselevels(133),suggestnoimpactofimmuneresponsesonmuscletransduction.Arandomized,doubleblind,andplacebo-controlledstudywasrecentlyopenedtostrengthenthedataofthispilotstudy(ClinicalTrials.gov:NCT03769116).Twoweeksaftervectorinjection,acaseofrhabdomyolysiswasreportedinaparticipantfromthissecondstudy.However,thestudydrugsafetymonitoringboardreviewedthedataandrecommendedthestudytocontinue,thussuggestingthattheadverseeventwaspossiblyunrelatedtotheinvestigationalproduct. TwoadditionalstudiesofsystemicrAAVvectordeliveryforDMDpresentedamorecomplexclinicalpicture.Inthefirstone,arAAV9vectorexpressingamicro-dystrophinunderthecontrolofamuscle-specificpromoterwasinfusedintravenouslyin6adolescentpatientsattwodoses,5×1013and2×1014vg/kg(ClinicalTrials.gov:NCT03368742).Despitemicrodystrophinexpression,thistrialwasplacedonholdbecause2patients,oneinthelowdoseandthesecondinthehighdosecohortdevelopedacutekidneyinjuryandactivationofthecomplementsystemwithsignsofcardiopulmonarydecline(134).InasecondtrialforDMD,1×1014vg/kgor3×1014vg/kgofanrAAV9vectorexpressingamini-dystrophinunderthecontrolofmuscle-specificpromoterwasinjectedin6adolescentpatientsfrom6to12yearsofage(ClinicalTrials.gov:NCT03362502).Mini-dystrophinexpressionlevelsabove20%ofwild-typewereobservedat2monthspostvectorinfusion,whileactivationoftheimmunesystem,asmeasuredbyneutralizingantibodylevelsandT-cellresponseswithELISPOT,wasdocumentedinalltheparticipants(135).Asinthepreviousclinicaltrial,oneoftheparticipantsshowedsymptomsofcomplementactivationandacutekidneyinjurythatrequiredatreatmentwithacomplementinhibitor(Eculizumab).Importantly,thesponsorobservedthattheactivationofthecomplementwasassociatedwitharapidantibodyresponseagainstthevector(135). ThedataobtainedfromclinicaltrialsinneuromusculardiseasessupporttheconceptthathighdosesofrAAVvectorsareingeneralwelltoleratedandhavethepotentialtotreatraregeneticdiseasesaffectingmuscleorcentralnervoussystem,particularlywhenthesehighdosesareadministeredduringearlychildhood.However,inadolescentpatients,complementactivation,possiblyduetoexaggeratedanti-vectorimmuneresponsesmayrepresentalimitationtotheapplicationofgenetherapyatsuchdoses.ItshouldbenotedthatthishypersensitivitytorAAVwasidentifiedinDMDpatientsthat,duetotheongoingmuscledegenerationandtheunderlyinginflammation,haveapeculiarimmunologicalenvironmentthattendstoexacerbateimmuneresponses(91).Thedisease-specificityoftheseresponsesispossiblysupportedbythefactthatinaclinicaltrialforLimb-girdlemusculardystrophytypeE,noinstancesofimmunemediatedtoxicitieswerereporteddespitetheuseofasimilarvectoratcomparabledoses.Othertriggeringfactorsarealsobeingconsideredtoexplaintheseemergingclinicalfindings,suchastheageofthesubjectsenrolled,thedifferentvectorsusedinthestudies,andeventuallycontaminantsderivedfromthedifferentprocessesusedtomanufacturetheclinicallotsofrAAVsusedinthestudies.Largerstudieswillhelptobetterdefinethedeterminantsoftheimmunotoxicitiesobservedinthosetrials. Conclusion Inrecentyears,wehaveaccumulatedsignificantclinicalexperiencewithAAVvectors.WhilethestudyofimmuneresponsesinAAVtrialshasresultedinimportantadvancesforthefield,alotmoreneedstobedonetoprovideaclearpictureofthecomplexinteractionsofAAVwiththehostimmunesysteminthedifferentclinicalsettingsofgenetransfer.Ofnote,relativelylittleisunderstoodonthehost-andvector-dependentfactorsinfluencingthedevelopmentofcytotoxicimmuneresponsesleadingtopoorgenetherapyoutcomesintermsofdurationoftransgeneexpression.Tothisend,onelimitationofthecurrentimmunomonitoringmethodsisthattheyrelyontheinvitrotestingofimmunecellsisolatedfromperipheralbloodvs.lymphocytesinfiltratingtheperipheraltissuestransducedwithrAAVvectors.Adistinctactivationprofileoftissue-residentcells,andthevariabilityassociatedtoPBMCscollectionandtestingacrossclinicaltrials(i.e.,thelackofstandardizationofassaysusedforimmunomonitoring),mayexplainthepoorcorrelationbetweenIFN-γELISPOTandimmunogenicityoutcomesobservedinsomeclinicaltrials.Additionally,themonitoringofcytokinesotherthanIFN-γmaybehelpfulinmoreeffectivelymonitorTcellactivationfollowingrAAVvectoradministration(52)(Figure3).Therelativelylownumberofsubjectsenrolledineachtrialalsorepresentsapotentiallimitationtothestudyofimmuneresponsesaftergenetransfer,althoughtheanalysisofthecollectiveresultsintheclinic,alongwithpreclinicalstudies,hasbeguntohighlightsomeofthedeterminantsofvectorimmunogenicity(e.g.,theabilityofrAAVvectorstoactivateinnateimmunity).AmoresystematicandstandardizedapproachtoimmunomonitoringinrAAVtrialsmayhelpfurtherboostourknowledgeonvectorimmunogenicityinhumans,particularlyforwhatconcernstheunderstandingoftheimportanceofthedisease-specificimmunecontextofgenetransfer.Thiswillbekeytodevisestrategiesaimedatreliablyachievingsafeandlong-lastingtherapeuticefficacyfollowingrAAVvectordelivery. AuthorContributions GR,D-AG,andFMwrotethemanuscript. Funding ThisworkwassupportedbytheEuropeanUnion’sResearchCouncilConsolidatorGrantunderGrantAgreementNo.617432(MoMAAVtoFM).D-AGwassupportedbyAgenceNationaledelaRecherche(ANR-15-CE15-0005-02)andParisÎle-de-FranceRegion(DIMThérapieGénique). ConflictofInterest FMwasemployedbySparkTherapeutics,aRochecompany.FMandGRareinventorsinpatentsrelatedtoAAVgenetherapyandthecontrolofimmuneresponsesagainstAAVvectors. Theremainingauthordeclaresthattheresearchwasconductedintheabsenceofanycommercialorfinancialrelationshipsthatcouldbeconstruedasapotentialconflictofinterest. Acknowledgments WethankDr.HanakoTsushimaforlanguageeditingandproofreadingthemanuscript. References 1.AtchisonRW,CastoBC,HammonWM.Adenovirus-associateddefectivevirusparticles.Science.(1965)149:754–6. PubMedAbstract|GoogleScholar 2.BullerRM,JanikJE,SebringED,RoseJA.Herpessimplexvirustypes1and2completelyhelpadenovirus-associatedvirusreplication.JVirol.(1981)40:241–7. PubMedAbstract|GoogleScholar 3.OgstonP,RajK,BeardP.Productivereplicationofadeno-associatedviruscanoccurinhumanpapillomavirustype16(HPV-16)episome-containingkeratinocytesandisaugmentedbytheHPV-16E2protein.JVirol.(2000)74:3494–504. PubMedAbstract|GoogleScholar 4.MooreAR,DongB,ChenL,XiaoW.VacciniavirusasasubhelperforAAVreplicationandpackaging.MolTherMethodsClinDev.(2015)2:15044.doi:10.1038/mtm.2015.44 PubMedAbstract|CrossRefFullText|GoogleScholar 5.BalakrishnanB,JayandharanGR.Basicbiologyofadeno-associatedvirus(AAV)vectorsusedingenetherapy.CurrGeneTher.(2014)14:86–100. PubMedAbstract|GoogleScholar 6.OgdenPJ,KelsicED,SinaiS,ChurchGM.ComprehensiveAAVcapsidfitnesslandscaperevealsaviralgeneandenablesmachine-guideddesign.Science.(2019)366:1139–43.doi:10.1126/science.aaw2900 PubMedAbstract|CrossRefFullText|GoogleScholar 7.CalcedoR,MorizonoH,WangL,McCarterR,HeJ,JonesD,etal.Adeno-associatedvirusantibodyprofilesinnewborns,children,andadolescents.ClinVaccineImmunol.(2011)18:1586–8.doi:10.1128/CVI.05107-11 PubMedAbstract|CrossRefFullText|GoogleScholar 8.ErlesK,SebokovaP,SchlehoferJR.Updateontheprevalenceofserumantibodies(IgGandIgM)toadeno-associatedvirus(AAV).JMedVirol.(1999)59:406–11. PubMedAbstract|GoogleScholar 9.LiC,NarkbunnamN,SamulskiRJ,AsokanA,HuG,JacobsonLJ,etal.Neutralizingantibodiesagainstadeno-associatedvirusexaminedprospectivelyinpediatricpatientswithhemophilia.GeneTher.(2011)19:288–94.doi:10.1038/gt.2011.90 PubMedAbstract|CrossRefFullText|GoogleScholar 10.SmithRH.Adeno-associatedvirusintegration:virusversusvector.GeneTher.(2008)15:817–22.doi:10.1038/gt.2008.55 PubMedAbstract|CrossRefFullText|GoogleScholar 11.MatsushitaT,ElligerS,ElligerC,PodsakoffG,VillarrealL,KurtzmanGJ,etal.Adeno-associatedvirusvectorscanbeefficientlyproducedwithouthelpervirus.GeneTher.(1998)5:938–45. PubMedAbstract|GoogleScholar 12.GrimmD,KernA,RittnerK,KleinschmidtJA.Noveltoolsforproductionandpurificationofrecombinantadenoassociatedvirusvectors.HumGeneTher.(1998)9:2745–60. PubMedAbstract|GoogleScholar 13.GaoGP,QuG,FaustLZ,EngdahlRK,XiaoW,HughesJV,etal.High-titeradeno-associatedviralvectorsfromaRep/Capcelllineandhybridshuttlevirus.HumGeneTher.(1998)9:2353–62. PubMedAbstract|GoogleScholar 14.ConwayJE,ZolotukhinS,MuzyczkaN,HaywardGS,ByrneBJ.Recombinantadeno-associatedvirustype2replicationandpackagingisentirelysupportedbyaherpessimplexvirustype1ampliconexpressingRepandCap.JVirol.(1997)71:8780–9. PubMedAbstract|GoogleScholar 15.ThomasDL,WangL,NiamkeJ,LiuJ,KangW,ScottiMM,etal.Scalablerecombinantadeno-associatedvirusproductionusingrecombinantherpessimplexvirustype1coinfectionofsuspension-adaptedmammaliancells.HumGeneTher.(2009)20:861–70.doi:10.1089/hum.2009.004 PubMedAbstract|CrossRefFullText|GoogleScholar 16.MarekM,vanOersMM,DevarajFF,VlakJM,MertenOW.Engineeringofbaculovirusvectorsforthemanufactureofvirion-freebiopharmaceuticals.BiotechnolBioeng.(2011)108:1056–67.doi:10.1002/bit.23028 PubMedAbstract|CrossRefFullText|GoogleScholar 17.WrightJF.ManufacturingandcharacterizingAAV-basedvectorsforuseinclinicalstudies.GeneTher.(2008)15:840–8.doi:10.1038/gt.2008.65 PubMedAbstract|CrossRefFullText|GoogleScholar 18.GriegerJC,SamulskiRJ.Adeno-associatedvirusvectorology,manufacturing,andclinicalapplications.MethodsEnzymol.(2012)507:229–54.doi:10.1016/B978-0-12-386509-0.00012-0 PubMedAbstract|CrossRefFullText|GoogleScholar 19.AyusoE,MingozziF,MontaneJ,LeonX,AnguelaXM,HaurigotV,etal.HighAAVvectorpurityresultsinserotype-andtissue-independentenhancementoftransductionefficiency.GeneTher.(2010)17:503–10.doi:10.1038/gt.2009.157 PubMedAbstract|CrossRefFullText|GoogleScholar 20.Penaud-BudlooM,FrançoisA,ClémentN,AyusoE.Pharmacologyofrecombinantadeno-associatedvirusproduction.MolTherMethodsClinDev.(2018)8:166–80.doi:10.1016/j.omtm.2018.01.002 PubMedAbstract|CrossRefFullText|GoogleScholar 21.WrightJF,WellmanJ,HighKA.ManufacturingandregulatorystrategiesforclinicalAAV2-hRPE65.CurrGeneTher.(2010)10:341–9. PubMedAbstract|GoogleScholar 22.AyusoE,MingozziF,BoschF.Production,purificationandcharacterizationofadeno-associatedvectors.CurrGeneTher.(2010)10:423–36. PubMedAbstract|GoogleScholar 23.XiangZ,KurupatiRK,LiY,KurandaK,ZhouX,MingozziF,etal.TheeffectofCpGsequencesoncapsid-specificCD8(+)TcellresponsestoAAVvectorgenetransfer.MolTher.(2019)28:771–83.doi:10.1016/j.ymthe.2019.11.014 PubMedAbstract|CrossRefFullText|GoogleScholar 24.McCartyDM.Self-complementaryAAVvectors;advancesandapplications.MolTher.(2008)16:1648–56.doi:10.1038/mt.2008.171 PubMedAbstract|CrossRefFullText|GoogleScholar 25.ValdmanisPN,LisowskiL,KayMA.rAAV-mediatedtumorigenesis:stillunresolvedafteranAAVassault.MolTher.(2012)20:2014–7. GoogleScholar 26.LiH,MalaniN,HamiltonSR,SchlachtermanA,BussadoriG,EdmonsonSE,etal.AssessingthepotentialforAAVvectorgenotoxicityinamurinemodel.Blood.(2011)117:3311–9.doi:10.1182/blood-2010-08-302729 PubMedAbstract|CrossRefFullText|GoogleScholar 27.SchultzBR,ChamberlainJS.Recombinantadeno-associatedvirustransductionandintegration.MolTher.(2008)16:1189–99. GoogleScholar 28.GaoG,VandenbergheLH,WilsonJM.NewrecombinantserotypesofAAVvectors.CurrGeneTher.(2005)5:285–97. PubMedAbstract|GoogleScholar 29.RabinowitzJE,RollingF,LiC,ConrathH,XiaoW,XiaoX,etal.Cross-packagingofasingleadeno-associatedvirus(AAV)type2vectorgenomeintomultipleAAVserotypesenablestransductionwithbroadspecificity.JVirol.(2002)76:791–801. PubMedAbstract|GoogleScholar 30.MaysLE,VandenbergheLH,XiaoR,BellP,NamHJ,Agbandje-McKennaM,etal.Adeno-associatedviruscapsidstructuredrivesCD4-dependentCD8+Tcellresponsetovectorencodedproteins.JImmunol.(2009)182:6051–60.doi:10.4049/jimmunol.0803965 PubMedAbstract|CrossRefFullText|GoogleScholar 31.KottermanMA,SchafferDV.Engineeringadeno-associatedvirusesforclinicalgenetherapy.NatRevGenet.(2014)15:445–51.doi:10.1038/nrg3742 PubMedAbstract|CrossRefFullText|GoogleScholar 32.AsokanA,SchafferDV,SamulskiRJ.TheAAVvectortoolkit:poisedattheclinicalcrossroads.MolTher.(2012)20:699–708.doi:10.1038/mt.2011.287 PubMedAbstract|CrossRefFullText|GoogleScholar 33.PeraboL,HuberA,MärschS,HallekM,BüningH.Artificialevolutionwithadeno-associatedvirallibraries.CombChemHighThroughputScreen.(2008)11:118–26. PubMedAbstract|GoogleScholar 34.GrimmD,PandeyK,NakaiH,StormTA,KayMA.Livertransductionwithrecombinantadeno-associatedvirusisprimarilyrestrictedbycapsidserotypenotvectorgenotype.JVirol.(2006)80:426–39. PubMedAbstract|GoogleScholar 35.TsengYS,Agbandje-McKennaM.MappingtheAAVcapsidhostantibodyresponsetowardthedevelopmentofsecondgenerationgenedeliveryvectors.FrontImmunol.(2014)5:9.doi:10.3389/fimmu.2014.00009 PubMedAbstract|CrossRefFullText|GoogleScholar 36.DavidssonM,WangG,Aldrin-KirkP,CardosoT,NolbrantS,HartnorM,etal.AsystematiccapsidevolutionapproachperformedinvivoforthedesignofAAVvectorswithtailoredpropertiesandtropism.ProcNatlAcadSciUSA.(2019)116:27053–62.doi:10.1073/pnas.1910061116 PubMedAbstract|CrossRefFullText|GoogleScholar 37.WangL,CalcedoR,WangH,BellP,GrantR,VandenbergheLH,etal.ThepleiotropiceffectsofnaturalAAVinfectionsonliver-directedgenetransferinmacaques.MolTher.(2010)18:126–34.doi:10.1038/mt.2009.245 PubMedAbstract|CrossRefFullText|GoogleScholar 38.CalcedoR,VandenbergheLH,GaoG,LinJ,WilsonJM.Worldwideepidemiologyofneutralizingantibodiestoadeno-associatedviruses.JInfectDis.(2009)199:381–90.doi:10.1086/595830 PubMedAbstract|CrossRefFullText|GoogleScholar 39.PerocheauDP,CunninghamS,LeeJ,AntinaoDiazJ,WaddingtonSN,GilmourK,etal.Age-relatedseroprevalenceofantibodiesagainstAAV-LK03inaUKpopulationCohort.HumGeneTher.(2019)30:79–87.doi:10.1089/hum.2018.098 PubMedAbstract|CrossRefFullText|GoogleScholar 40.LeborgneC,LatournerieV,BoutinS,DesgueD,QuéréA,PignotE,etal.Prevalenceandlong-termmonitoringofhumoralimmunityagainstadeno-associatedvirusinduchennemusculardystrophypatients.CellImmunol.(2019)342:103780.doi:10.1016/j.cellimm.2018.03.004 PubMedAbstract|CrossRefFullText|GoogleScholar 41.KruzikA,FetahagicD,HartliebB,DornS,KoppensteinerH,HorlingFM,etal.Prevalenceofanti-adeno-associatedvirusimmuneresponsesininternationalCohortsofhealthydonors.MolTherMethodsClinDev.(2019)14:126–33.doi:10.1016/j.omtm.2019.05.014 PubMedAbstract|CrossRefFullText|GoogleScholar 42.MurphySL,LiH,MingozziF,SabatinoDE,HuiDJ,EdmonsonSA,etal.DiverseIgGsubclassresponsestoadeno-associatedvirusinfectionandvectoradministration.JMedVirol.(2009)81:65–74.doi:10.1002/jmv.21360 PubMedAbstract|CrossRefFullText|GoogleScholar 43.FitzpatrickZ,LeborgneC,BarbonE,MasatE,RonzittiG,vanWittenbergheL,etal.Influenceofpre-existinganti-capsidneutralizingandbindingantibodiesonAAVvectortransduction.MolTherMethodsClinDev.(2018)9:119–29.doi:10.1016/j.omtm.2018.02.003 PubMedAbstract|CrossRefFullText|GoogleScholar 44.JiangH,CoutoLB,Patarroyo-WhiteS,LiuT,NagyD,VargasJA,etal.Effectsoftransientimmunosuppressiononadenoassociated,virus-mediated,liver-directedgenetransferinrhesusmacaquesandimplicationsforhumangenetherapy.Blood.(2006)108:3321–8. PubMedAbstract|GoogleScholar 45.MannoCS,PierceGF,ArrudaVR,GladerB,RagniM,RaskoJJ,etal.SuccessfultransductionofliverinhemophiliabyAAV-FactorIXandlimitationsimposedbythehostimmuneresponse.NatMed.(2006)12:342–7. PubMedAbstract|GoogleScholar 46.ScallanCD,JiangH,LiuT,Patarroyo-WhiteS,SommerJM,ZhouS,etal.HumanimmunoglobulininhibitslivertransductionbyAAVvectorsatlowAAV2neutralizingtitersinSCIDmice.Blood.(2006)107:1810–7. PubMedAbstract|GoogleScholar 47.WalportMJ.Complement.Firstoftwoparts.NEnglJMed.(2001)344:1058–66. GoogleScholar 48.ZaissAK,CotterMJ,WhiteLR,ClarkSA,WongNC,HolersVM,etal.Complementisanessentialcomponentoftheimmuneresponsetoadeno-associatedvirusvectors.JVirol.(2008)82:2727–40.doi:10.1128/JVI.01990-07 PubMedAbstract|CrossRefFullText|GoogleScholar 49.DenardJ,MarolleauB,JennyC,RaoTN,FehlingHJ,VoitT,etal.C-reactiveprotein(CRP)isessentialforefficientsystemictransductionofrecombinantadeno-associatedvirusvector1(rAAV-1)andrAAV-6inmice.JVirol.(2013)87:10784–91.doi:10.1128/JVI.01813-13 PubMedAbstract|CrossRefFullText|GoogleScholar 50.MingozziF,MausMV,HuiDJ,SabatinoDE,MurphySL,RaskoJE,etal.CD8(+)T-cellresponsestoadeno-associatedviruscapsidinhumans.NatMed.(2007)13:419–22. PubMedAbstract|GoogleScholar 51.NathwaniAC,RosalesC,McIntoshJ,RastegarlariG,NathwaniD,RajD,etal.Long-termsafetyandefficacyfollowingsystemicadministrationofaself-complementaryAAVvectorencodinghumanFIXpseudotypedwithserotype5and8capsidproteins.MolTher.(2011)19:876–85.doi:10.1038/mt.2010.274 PubMedAbstract|CrossRefFullText|GoogleScholar 52.KurandaK,Jean-AlphonseP,LeborgneC,HardetR,CollaudF,MarmierS,etal.Exposuretowild-typeAAVdrivesdistinctcapsidimmunityprofilesinhumans.JClinInvest.(2018)128:5267–79.doi:10.1172/JCI122372 PubMedAbstract|CrossRefFullText|GoogleScholar 53.LiH,LasaroMO,JiaB,LinSW,HautLH,HighKA,etal.Capsid-specificT-cellresponsestonaturalinfectionswithadeno-associatedvirusesinhumansdifferfromthoseofnonhumanprimates.MolTher.(2011)19:2021–30.doi:10.1038/mt.2011.81 PubMedAbstract|CrossRefFullText|GoogleScholar 54.ZhiQuanX,KurupatiRK,LiY,KurandaK,ZhouX,MingozziF,etal.TheeffectofCpGsequencesoncapsid-specificCD8+TcellresponsestoAAVvectorgenetransfer.MolTher.(2019)28:771–83.doi:10.1016/j.ymthe.2019.11.014 PubMedAbstract|CrossRefFullText|GoogleScholar 55.CalcedoR,ChichesterJA,WilsonJM.Assessmentofhumoral,innate,andT-cellimmuneresponsestoadeno-associatedvirusvectors.HumGeneTherMethods.(2018)29:86–95.doi:10.1089/hgtb.2018.038 PubMedAbstract|CrossRefFullText|GoogleScholar 56.HuiDJ,EdmonsonSC,PodsakoffGM,PienGC,IvanciuL,CamireRM,etal.AAVcapsidCD8+T-cellepitopesarehighlyconservedacrossAAVserotypes.MolTherMethodsClinDev.(2015)2:15029.doi:10.1038/mtm.2015.29 PubMedAbstract|CrossRefFullText|GoogleScholar 57.MartinoAT,HerzogRW,AnegonI,AdjaliO.MeasuringimmuneresponsestorecombinantAAVgenetransfer.MethodsMolBiol.(2011)807:259–72. GoogleScholar 58.VeronP,LeborgneC,MonteilhetV,BoutinS,MartinS,MoullierP,etal.Humoralandcellularcapsid-specificimmuneresponsestoadeno-associatedvirusType1inrandomizedhealthydonors.JImmunol.(2012)188:6418–24.doi:10.4049/jimmunol.1200620 PubMedAbstract|CrossRefFullText|GoogleScholar 59.VandammeC,XiclunaR,HesnardL,DevauxM,JaulinN,GuilbaudM,etal.Tetramer-basedenrichmentofpreexistinganti-AAV8CD8(+)TcellsinhumandonorsallowsthedetectionofaTEMRAsubpopulation.FrontImmunol.(2019)10:3110.doi:10.3389/fimmu.2019.03110 PubMedAbstract|CrossRefFullText|GoogleScholar 60.MingozziF,HasbrouckNC,Basner-TschakarjanE,EdmonsonSA,HuiDJ,SabatinoDE,etal.ModulationoftolerancetothetransgeneproductinanonhumanprimatemodelofAAV-mediatedgenetransfertoliver.Blood.(2007)110:2334–41. PubMedAbstract|GoogleScholar 61.NewellEW,SigalN,BendallSC,NolanGP,DavisMM.Cytometrybytime-of-flightshowscombinatorialcytokineexpressionandvirus-specificcellnicheswithinacontinuumofCD8+Tcellphenotypes.Immunity.(2012)36:142–52.doi:10.1016/j.immuni.2012.01.002 PubMedAbstract|CrossRefFullText|GoogleScholar 62.LiC,HirschM,AsokanA,ZeithamlB,MaH,KafriT,etal.Adeno-associatedvirustype2(AAV2)capsid-specificcytotoxicTlymphocyteseliminateonlyvector-transducedcellscoexpressingtheAAV2capsidinvivo.JVirol.(2007)81:7540–7. PubMedAbstract|GoogleScholar 63.LiH,MurphySL,Giles-DavisW,EdmonsonS,XiangZ,LiY,etal.Pre-existingAAVcapsid-specificCD8+TcellsareunabletoeliminateAAV-transducedhepatocytes.MolTher.(2007)15:792–800. PubMedAbstract|GoogleScholar 64.WangL,FigueredoJ,CalcedoR,LinJ,WilsonJM.Cross-presentationofadeno-associatedvirusserotype2capsidsactivatescytotoxicTcellsbutdoesnotrenderhepatocyteseffectivecytolytictargets.HumGeneTher.(2007)18:185–94. PubMedAbstract|GoogleScholar 65.TrinchieriG,SherA.CooperationofToll-likereceptorsignalsininnateimmunedefence.NatRevImmunol.(2007)7:179–90. PubMedAbstract|GoogleScholar 66.RogersGL,ShirleyJL,ZolotukhinI,KumarSRP,ShermanA,PerrinGQ,etal.PlasmacytoidandconventionaldendriticcellscooperateincrossprimingAAVcapsid-specificCD8(+)Tcells.Blood.(2017)129:3184–95.doi:10.1182/blood-2016-11-751040 PubMedAbstract|CrossRefFullText|GoogleScholar 67.ShirleyJL,KeelerGD,ShermanA,ZolotukhinI,MarkusicDM,HoffmanBE,etal.TypeIIFNsensingbycDCsandCD4(+)Tcellhelparebothrequisiteforcross-primingofAAVcapsid-specificCD8(+)TCells.MolTher.(2019)28:758–70.doi:10.1016/j.ymthe.2019.11.011 PubMedAbstract|CrossRefFullText|GoogleScholar 68.HöselM,BroxtermannM,JanickiH,EsserK,ArzbergerS,HartmannP,etal.Toll-likereceptor2-mediatedinnateimmuneresponseinhumannonparenchymallivercellstowardadeno-associatedviralvectors.Hepatology.(2012)55:287–97.doi:10.1002/hep.24625 PubMedAbstract|CrossRefFullText|GoogleScholar 69.MartinoAT,SuzukiM,MarkusicDM,ZolotukhinI,RyalsRC,MoghimiB,etal.Thegenomeofself-complementaryadeno-associatedviralvectorsincreasesToll-likereceptor9-dependentinnateimmuneresponsesintheliver.Blood.(2011)117:6459–68.doi:10.1182/blood-2010-10-314518 PubMedAbstract|CrossRefFullText|GoogleScholar 70.ZhuJ,HuangX,YangY.TheTLR9-MyD88pathwayiscriticalforadaptiveimmuneresponsestoadeno-associatedvirusgenetherapyvectorsinmice.JClinInvest.(2009)119:2388–98.doi:10.1172/JCI37607 PubMedAbstract|CrossRefFullText|GoogleScholar 71.HerzogRW,CooperM,PerrinGQ,BiswasM,MartinoAT,MorelL,etal.RegulatoryTcellsandTLR9activationshapeantibodyformationtoasecretedtransgeneproductinAAVmusclegenetransfer.CellImmunol.(2019)342:103682.doi:10.1016/j.cellimm.2017.07.012 PubMedAbstract|CrossRefFullText|GoogleScholar 72.RogersGL,SuzukiM,ZolotukhinI,MarkusicDM,MorelLM,LeeB,etal.UniquerolesofTLR9-andMyD88-dependentand-independentpathwaysinadaptiveimmuneresponsestoAAV-mediatedgenetransfer.JInnateImmun.(2015)7:302–14.doi:10.1159/000369273 PubMedAbstract|CrossRefFullText|GoogleScholar 73.ShaoW,EarleyLF,ChaiZ,ChenX,SunJ,HeT,etal.Double-strandedRNAinnateimmuneresponseactivationfromlong-termadeno-associatedvirusvectortransduction.JCIInsight.(2018)3:e120474.doi:10.1172/jci.insight.120474 PubMedAbstract|CrossRefFullText|GoogleScholar 74.NathwaniAC,ReissUM,TuddenhamEG,RosalesC,ChowdaryP,McIntoshJ,etal.Long-termsafetyandefficacyoffactorIXgenetherapyinhemophiliaB.NEnglJMed.(2014)371:1994–2004.doi:10.1056/NEJMoa1407309 PubMedAbstract|CrossRefFullText|GoogleScholar 75.AbbasAK,LichtmanAH.BasicImmunology:FunctionsandDisordersoftheImmuneSystem.3rded.Philadelphia,PA:Saunders.(2009). GoogleScholar 76.PienGC,Basner-TschakarjanE,HuiDJ,MentlikAN,FinnJD,HasbrouckNC,etal.Capsidantigenpresentationflagshumanhepatocytesfordestructionaftertransductionbyadeno-associatedviralvectors.JClinInvest.(2009)119:1688–95.doi:10.1172/JCI36891 PubMedAbstract|CrossRefFullText|GoogleScholar 77.PalaschakB,MarsicD,HerzogRW,ZolotukhinS,MarkusicDM.Animmune-competentmurinemodeltostudyeliminationofAAV-transducedhepatocytesbycapsid-specificCD8(+)Tcells.MolTherMethodsClinDev.(2017)5:142–52.doi:10.1016/j.omtm.2017.04.004 PubMedAbstract|CrossRefFullText|GoogleScholar 78.GeorgeLA,SullivanSK,GiermaszA,RaskoJEJ,Samelson-JonesBJ,DucoreJ,etal.HemophiliaBgenetherapywithahigh-specific-activityfactorIXvariant.NEnglJMed.(2017)377:2215–27.doi:10.1056/NEJMoa1708538 PubMedAbstract|CrossRefFullText|GoogleScholar 79.MelianiA,BoisgeraultF,HardetR,MarmierS,CollaudF,RonzittiG,etal.Antigen-selectivemodulationofAAVimmunogenicitywithtolerogenicrapamycinnanoparticlesenablessuccessfulvectorre-administration.NatCommun.(2018)9:4098.doi:10.1038/s41467-018-06621-3 PubMedAbstract|CrossRefFullText|GoogleScholar 80.CortiM,ElderM,FalkD,LawsonL,SmithB,NayakS,etal.B-celldepletionisprotectiveagainstanti-AAVcapsidimmuneresponse:ahumansubjectcasestudy.MolTherMethodsClinDev.(2014)1:14033. PubMedAbstract|GoogleScholar 81.NathwaniAC,TuddenhamEG,RangarajanS,RosalesC,McIntoshJ,LinchDC,etal.Adenovirus-associatedvirusvector-mediatedgenetransferinhemophiliaB.NEnglJMed.(2011)365:2357–65.doi:10.1056/NEJMoa1108046 PubMedAbstract|CrossRefFullText|GoogleScholar 82.MingozziF,MeulenbergJJ,HuiDJ,Basner-TschakarjanE,HasbrouckNC,EdmonsonSA,etal.AAV-1-mediatedgenetransfertoskeletalmuscleinhumansresultsindose-dependentactivationofcapsid-specificTcells.Blood.(2009)114:2077–86.doi:10.1182/blood-2008-07-167510 PubMedAbstract|CrossRefFullText|GoogleScholar 83.FinnJD,HuiD,DowneyHD,DunnD,PienGC,MingozziF,etal.ProteasomeinhibitorsdecreaseAAV2capsidderivedpeptideepitopepresentationonMHCclassIfollowingtransduction.MolTher.(2010)18:135–42.doi:10.1038/mt.2009.257 PubMedAbstract|CrossRefFullText|GoogleScholar 84.GreigJA,CalcedoR,Kuri-CervantesL,NordinJML,AlbrechtJ,BoteE,etal.AAV8genetherapyforcrigler-najjarsyndromeinmacaqueselicitedtransgeneTcellresponsesthatareresidenttotheliver.MolTherMethodsClinDev.(2018)11:191–201.doi:10.1016/j.omtm.2018.10.012 PubMedAbstract|CrossRefFullText|GoogleScholar 85.MendellJR,CampbellK,Rodino-KlapacL,SahenkZ,ShillingC,LewisS,etal.DystrophinimmunityinDuchenne’smusculardystrophy.NEnglJMed.(2010)363:1429–37.doi:10.1056/NEJMoa1000228 PubMedAbstract|CrossRefFullText|GoogleScholar 86.CalcedoR,SomanathanS,QinQ,BettsMR,RechAJ,VonderheideRH,etal.ClassI-restrictedT-cellresponsestoapolymorphicpeptideinagenetherapyclinicaltrialforalpha-1-antitrypsindeficiency.ProcNatlAcadSciUSA.(2017)114:1655–9.doi:10.1073/pnas.1617726114 PubMedAbstract|CrossRefFullText|GoogleScholar 87.MuellerC,GernouxG,GruntmanAM,BorelF,ReevesEP,CalcedoR,etal.5YearExpressionandneutrophildefectrepairaftergenetherapyinAlpha-1antitrypsindeficiency.MolTher.(2017)25:1387–94.doi:10.1016/j.ymthe.2017.03.029 PubMedAbstract|CrossRefFullText|GoogleScholar 88.TardieuM,ZérahM,GougeonML,AusseilJ,deBournonvilleS,HussonB,etal.IntracerebralgenetherapyinchildrenwithmucopolysaccharidosistypeIIIBsyndrome:anuncontrolledphase1/2clinicaltrial.LancetNeurol.(2017)16:712–20.doi:10.1016/S1474-4422(17)30169-2 PubMedAbstract|CrossRefFullText|GoogleScholar 89.PoupiotJ,CostaVerderaH,HardetR,ColellaP,CollaudF,BartoloL,etal.RoleofregulatoryTcellandeffectorTcellexhaustioninliver-mediatedtransgenetoleranceinmuscle.MolTherMethodsClinDev.(2019)15:83–100.doi:10.1016/j.omtm.2019.08.012 PubMedAbstract|CrossRefFullText|GoogleScholar 90.XiongW,WuDM,XueY,WangSK,ChungMJ,JiX,etal.AAVcis-regulatorysequencesarecorrelatedwithoculartoxicity.ProcNatlAcadSciUSA.(2019)116:5785–94.doi:10.1073/pnas.1821000116 PubMedAbstract|CrossRefFullText|GoogleScholar 91.BoisgeraultF,MingozziF.TheskeletalmuscleenvironmentanditsroleinimmunityandtolerancetoAAVvector-mediatedgenetransfer.CurrGeneTher.(2015)15:381–94. PubMedAbstract|GoogleScholar 92.CaoO,DobrzynskiE,WangL,NayakS,MingleB,TerhorstC,etal.InductionandroleofregulatoryCD4+CD25+Tcellsintolerancetothetransgeneproductfollowinghepaticinvivogenetransfer.Blood.(2007)110:1132–40. PubMedAbstract|GoogleScholar 93.MingozziF,LiuYL,DobrzynskiE,KaufholdA,LiuJH,WangY,etal.InductionofimmunetolerancetocoagulationfactorIXantigenbyinvivohepaticgenetransfer.JClinInvest.(2003)111:1347–56. PubMedAbstract|GoogleScholar 94.BartoloL,LiChungTongS,ChappertP,UrbainD,CollaudF,ColellaP,etal.Dualmuscle-livertransductionimposesimmunetoleranceformuscletransgeneengraftmentdespitepreexistingimmunity.JCIInsight.(2019)4:e127008.doi:10.1172/jci.insight.127008 PubMedAbstract|CrossRefFullText|GoogleScholar 95.PillarisettyVG,ShahAB,MillerG,BleierJI,DeMatteoRP.Liverdendriticcellsarelessimmunogenicthanspleendendriticcellsbecauseofdifferencesinsubtypecomposition.JImmunol.(2004)172:1009–17. PubMedAbstract|GoogleScholar 96.YouQ,ChengL,KedlRM,JuC.MechanismofTcelltoleranceinductionbymurinehepaticKupffercells.Hepatology.(2008)48:978–90.doi:10.1002/hep.22395 PubMedAbstract|CrossRefFullText|GoogleScholar 97.KnolleP,SchlaakJ,UhrigA,KempfP,MeyerzumBüschenfeldeKH,GerkenG.HumanKupffercellssecreteIL-10inresponsetolipopolysaccharide(LPS)challenge.JHepatol.(1995)22:226–9. PubMedAbstract|GoogleScholar 98.LiuJ,YuQ,WuW,HuangX,BroeringR,WernerM,etal.TLR2stimulationstrengthensintrahepaticmyeloid-derivedcell-mediatedTcelltolerancethroughinducingKupffercellexpansionandIL-10production.JImmunol.(2018)200:2341–51.doi:10.4049/jimmunol.1700540 PubMedAbstract|CrossRefFullText|GoogleScholar 99.BreousE,SomanathanS,VandenbergheLH,WilsonJM.HepaticregulatoryTcellsandKupffercellsarecrucialmediatorsofsystemicTcelltolerancetoantigenstargetingmurineliver.Hepatology(Baltimore,Md.).(2009)50:612–21.doi:10.1002/hep.23043 PubMedAbstract|CrossRefFullText|GoogleScholar 100.BénéchetAP,DeSimoneG,DiLuciaP,CilentiF,BarbieraG,LeBertN,etal.DynamicsandgenomiclandscapeofCD8(+)Tcellsundergoinghepaticpriming.Nature.(2019)574:200–5.doi:10.1038/s41586-019-1620-6 PubMedAbstract|CrossRefFullText|GoogleScholar 101.KumarSRP,HoffmanBE,TerhorstC,deJongYP,HerzogRW.ThebalancebetweenCD8+TCell-mediatedclearanceofAAV-encodedantigenintheliverandtoleranceisdependentonthevectordose.MolTher.(2017)25:880–91.doi:10.1016/j.ymthe.2017.02.014 PubMedAbstract|CrossRefFullText|GoogleScholar 102.TaySS,WongYC,McDonaldDM,WoodNA,RoedigerB,SierroF,etal.AntigenexpressionlevelthresholdtunesthefateofCD8Tcellsduringprimaryhepaticimmuneresponses.ProcNatlAcadSciUSA.(2014)111:E2540–9.doi:10.1073/pnas.1406674111 PubMedAbstract|CrossRefFullText|GoogleScholar 103.HolzLE,BenselerV,BowenDG,BouilletP,StrasserA,O’ReillyL,etal.IntrahepaticmurineCD8T-cellactivationassociateswithadistinctphenotypeleadingtoBim-dependentdeath.Gastroenterology.(2008)135:989–97.doi:10.1053/j.gastro.2008.05.078 PubMedAbstract|CrossRefFullText|GoogleScholar 104.BurghardtS,ClaassB,ErhardtA,KarimiK,TiegsG.HepatocytesinduceFoxp3(+)regulatoryTcellsbynotchsignaling.JLeukocBiol.(2014)96:571–7.doi:10.1189/jlb.2AB0613-342RR PubMedAbstract|CrossRefFullText|GoogleScholar 105.BurghardtS,ErhardtA,ClaassB,HuberS,AdlerG,JacobsT,etal.HepatocytescontributetoimmuneregulationintheliverbyactivationoftheNotchsignalingpathwayinTcells.JImmunol.(2013)191:5574–82.doi:10.4049/jimmunol.1300826 PubMedAbstract|CrossRefFullText|GoogleScholar 106.BreousE,SomanathanS,WilsonJM.BALB/cmiceshowimpairedhepatictolerogenicresponsefollowingAAVgenetransfertotheliver.MolTher.(2010)18:766–74.doi:10.1038/mt.2009.301 PubMedAbstract|CrossRefFullText|GoogleScholar 107.BiswasM,SarkarD,KumarSR,NayakS,RogersGL,MarkusicDM,etal.SynergybetweenrapamycinandFLT3ligandenhancesplasmacytoiddendriticcell–dependentinductionofCD4+CD25+FoxP3+Treg.Blood.(2015)125:2937–47.doi:10.1182/blood-2014-09-599266 PubMedAbstract|CrossRefFullText|GoogleScholar 108.KeelerGD,KumarS,PalaschakB,SilverbergEL,MarkusicDM,JonesNT,etal.Genetherapy-inducedantigen-specifictregsinhibitneuro-inflammationandreversediseaseinamousemodelofmultiplesclerosis.MolTher.(2018)26:173–83.doi:10.1016/j.ymthe.2017.09.001 PubMedAbstract|CrossRefFullText|GoogleScholar 109.LeGuenV,JudorJP,BoeffardF,GauttierV,FerryN,SoulillouJP,etal.AlloantigengenetransfertohepatocytespromotestolerancetopancreaticisletgraftbyinducingCD8(+)regulatoryTcells.JHepatol.(2017)66:765–77.doi:10.1016/j.jhep.2016.11.019 PubMedAbstract|CrossRefFullText|GoogleScholar 110.BenselerV,WarrenA,VoM,HolzLE,TaySS,LeCouteurDG,etal.HepatocyteentryleadstodegradationofautoreactiveCD8Tcells.ProcNatlAcadSciUSA.(2011)108:16735–40.doi:10.1073/pnas.1112251108 PubMedAbstract|CrossRefFullText|GoogleScholar 111.DobrzynskiE,MingozziF,LiuYL,BendoE,CaoO,WangL,etal.Inductionofantigen-specificCD4+T-cellanergyanddeletionbyinvivoviralgenetransfer.Blood.(2004)104:969–77. PubMedAbstract|GoogleScholar 112.NiemeyerGP,HerzogRW,MountJ,ArrudaVR,TillsonDM,HathcockJ,etal.Long-termcorrectionofinhibitor-pronehemophiliaBdogstreatedwithliver-directedAAV2-mediatedfactorIXgenetherapy.Blood.(2009)113:797–806.doi:10.1182/blood-2008-10-181479 PubMedAbstract|CrossRefFullText|GoogleScholar 113.NathwaniAC,GrayJT,McIntoshJ,NgCY,ZhouJ,SpenceY,etal.Safeandefficienttransductionoftheliverafterperipheralveininfusionofself-complementaryAAVvectorresultsinstabletherapeuticexpressionofhumanFIXinnonhumanprimates.Blood.(2007)109:1414–21. PubMedAbstract|GoogleScholar 114.McCartyDM,MonahanPE,SamulskiRJ.Self-complementaryrecombinantadeno-associatedvirus(scAAV)vectorspromoteefficienttransductionindependentlyofDNAsynthesis.GeneTher.(2001)8:1248–54. PubMedAbstract|GoogleScholar 115.ReissUM.AAV8-FIXlongtermfollowupandfutureplans,inProceedingsoftheOralPresentationNationalHemophiliaFoundation’s15thWorkshoponNovelTechnologiesandGeneTransferforHemophilia2019.Washington,DC:NationalHemophiliaFoundation.(2019). GoogleScholar 116.MiesbachW,MeijerK,CoppensM,KampmannP,KlamrothR,SchutgensR,etal.Genetherapywithadeno-associatedvirusvector5-humanfactorIXinadultswithhemophiliaB.Blood.(2018)131:1022–31.doi:10.1182/blood-2017-09-804419 PubMedAbstract|CrossRefFullText|GoogleScholar 117.RangarajanS,WalshL,LesterW,PerryD,MadanB,LaffanM,etal.AAV5-FactorVIIIGenetransferinsevereHemophiliaA.NEnglJMed.(2017)377:2519–30.doi:10.1056/NEJMoa1708483 PubMedAbstract|CrossRefFullText|GoogleScholar 118.PasiKJ,RangarajanS,MitchellN,LesterW,SymingtonE,MadanB,etal.MultiyearFollow-upofAAV5-hFVIII-SQgenetherapyforHemophiliaA.NEnglJMed.(2020)382:29–40.doi:10.1056/NEJMoa1908490 PubMedAbstract|CrossRefFullText|GoogleScholar 119.MonahanPE,SunJ,GuiT,HuG,HannahWB,WichlanDG,etal.Employingagain-of-functionfactorIXvariantR338LtoadvancetheefficacyandsafetyofhemophiliaBhumangenetherapy:preclinicalevaluationsupportinganongoingadeno-associatedvirusclinicaltrial.HumGeneTher.(2015)26:69–81.doi:10.1089/hum.2014.106 PubMedAbstract|CrossRefFullText|GoogleScholar 120.BilicI,MonahanP,BergV,ScheiflingerF,ReipertBM.Wholeexomesequencingofpatientstreatedwithadeno-associatedvirusserotype8-factorIX(AAV8-FIX)genetherapyrevealspotentialdeterminantsofpersistenttransgeneexpression.ResPractThrombHaemost.(2019)3(Suppl.1):95. GoogleScholar 121.KoppensteinerH,HartliebB,FrentschM,DingeldeyM,HorlingF,HorlingFM,etal.IncreasedimmunogenicityofCpGcontainingadeno-associatedvirusserotype8(AAV8)constructsmightcontributetothedropoftransgeneexpression.ResPractThrombHaemost.(2019)3(Suppl.1):302. GoogleScholar 122.PipeS,StineK,RajasekharA,EveringtonT,PomaA,CrombezE,etal.101HEMB01isaphase1/2open-label,singleascendingdose-findingtrialofDTX101(AAVrh10FIX)inpatientswithmoderate/severeHemophiliaBthatdemonstratedmeaningfulbuttransientexpressionofhumanfactorIX(hFIX).Blood.(2017)130(Suppl.1):3331. GoogleScholar 123.CalcedoR,Kuri-CervantesL,PengH,QinQ,BoydS,SchneiderM,etal.Immuneresponsesin101HEMB01,aPhase1/2open-label,singleascendingdose-findingtrialofDTX101(AAVrh10FIX)inpatientswithsevereHemophiliaB.Blood.(2017)130(Suppl.1):3333. GoogleScholar 124.HoySM.Onasemnogeneabeparvovec:firstglobalapproval.Drugs.(2019)79:1255–62.doi:10.1007/s40265-019-01162-5 PubMedAbstract|CrossRefFullText|GoogleScholar 125.MendellJR,Al-ZaidyS,ShellR,ArnoldWD,Rodino-KlapacLR,PriorTW,etal.Single-dosegene-replacementtherapyforspinalmuscularatrophy.NEnglJMed.(2017)377:1713–22.doi:10.1056/NEJMoa1706198 PubMedAbstract|CrossRefFullText|GoogleScholar 126.MendellJR,Al-ZaidyS,ShellR,BurghesAHM,FoustKD,KasparBK,etal.GenetherapyforspinalmuscularatrophyType1showspotentialtoimprovesurvivalandmotorfunctionaloutcomes.MolTher.(2016)24(Suppl.1):S190. GoogleScholar 127.LowesLP,AlfanoLN,ArnoldWD,ShellR,PriorTW,McCollyM,etal.Impactofageandmotorfunctioninaphase1/2AstudyofinfantswithSMAType1receivingsingle-dosegenereplacementtherapy.PediatrNeurol.(2019)98:39–45.doi:10.1016/j.pediatrneurol.2019.05.005 PubMedAbstract|CrossRefFullText|GoogleScholar 128.Al-ZaidyS,PickardAS,KothaK,AlfanoLN,LowesL,PaulG,etal.Healthoutcomesinspinalmuscularatrophytype1followingAVXS-101genereplacementtherapy.PediatrPulmonol.(2019)54:179–85.doi:10.1002/ppul.24203 PubMedAbstract|CrossRefFullText|GoogleScholar 129.FinkelR,DayJ,DarrasB,KuntzN,ConnollyA,CrawfordT,etal.Intrathecaladministrationofonasemnogeneabeparvovecgene-replacementtherapy(GRT)forspinalmuscularatrophytype2(SMA2):phase1/2astudy(STRONG).NeuromusculDisord.(2019)29(Suppl.1):S207. GoogleScholar 130.HindererC,KatzN,BuzaEL,DyerC,GoodeT,BellP,etal.Severetoxicityinnonhumanprimatesandpigletsfollowinghigh-doseintravenousadministrationofanadeno-associatedvirusvectorexpressinghumanSMN.HumGeneTher.(2018)29:285–98.doi:10.1089/hum.2018.015 PubMedAbstract|CrossRefFullText|GoogleScholar 131.cureSMA.AveXisIssuesCommunityStatementonAVXS-101ClinicalHold.(2019).Availableonlineat:https://www.curesma.org/avexis-community-statement-clinical-hold2019/(accessedDecember04,2019)GoogleScholar 132.DowlingJ.ASPIROphase1/2genetherapytrialinX-linkedmotubularmyopathy(XLMTM):updateonpreliminarysafetyandefficacyfindings.24thWorldMuscleSocietyMeeting2019.NeuromusculDisord.(2019)29:S37–S208. GoogleScholar 133.Rodino-KlapacL.Neuromusculartargetedtherapies,inProceedingsofthe22ndAnnualMeeting:FinalProgramGuide.Washington,DC:AmericanSocietyofGene&CellTherapy.(2019). GoogleScholar 134.SolidBiosciencesInc.SolidBiosciencesProvidesSGT-001ProgramUpdate.Cambridge,MA:SolidBiosciencesInc.(2019). GoogleScholar 135.PfizerInc.PfizerPresentsInitialClinicalDataonPhase1bGeneTherapyStudyforDuchenneMuscularDystrophy(DMD).NewYork,NY:PfizerInc.(2019). GoogleScholar Keywords:AAVvectors,genetherapy,Tcells,Bcells,clinicaltrials Citation:RonzittiG,GrossD-AandMingozziF(2020)HumanImmuneResponsestoAdeno-AssociatedVirus(AAV)Vectors.Front.Immunol.11:670.doi:10.3389/fimmu.2020.00670 Received:30January2020;Accepted:24March2020;Published:17April2020. Editedby: MoriyaTsuji,ColumbiaUniversityIrvingMedicalCenter,UnitedStates Reviewedby: NathalieClement,UniversityofFlorida,UnitedStates ChengwenLi,TheUniversityofNorthCarolinaatChapelHill,UnitedStates Copyright©2020Ronzitti,GrossandMingozzi.Thisisanopen-accessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(CCBY).Theuse,distributionorreproductioninotherforumsispermitted,providedtheoriginalauthor(s)andthecopyrightowner(s)arecreditedandthattheoriginalpublicationinthisjournaliscited,inaccordancewithacceptedacademicpractice.Nouse,distributionorreproductionispermittedwhichdoesnotcomplywiththeseterms. *Correspondence:GiuseppeRonzitti,[email protected];FedericoMingozzi,[email protected] Peoplealsolookedat Download



請為這篇文章評分?