Genome structure and gene content in protist mitochondrial ...
文章推薦指數: 80 %
This review surveys the 23 complete protist mtDNA sequences that have been determined to date, commenting on such aspects as mitochondrial genome structure, ... SkiptoMainContent Advertisement SearchMenu AccountMenu Menu SignIn Register NavbarSearchFilter ThisissueAllNucleicAcidsResearch AllNARJournalsAllJournals MobileMicrositeSearchTerm Search SignIn Register Issues Sectionbrowse ChemicalBiologyandNucleicAcidChemistry ComputationalBiology DataResourcesandAnalyses GeneRegulation,ChromatinandEpigenetics GenomeIntegrity,RepairandReplication Genomics MolecularBiology NucleicAcidEnzymes RNAandRNA-proteincomplexes StructuralBiology SyntheticBiologyandBioengineering MethodsOnline SurveysandSummaries Database WebServer Advancearticles Submit AuthorGuidelines SubmissionSite OpenAccess Purchase About AboutNucleicAcidsResearch EditorialBoard InformationofReferees AdvertisingandCorporateServices JournalsCareerNetwork Alerts Policies Self-ArchivingPolicy DispatchDates Issues Sectionbrowse ChemicalBiologyandNucleicAcidChemistry ComputationalBiology DataResourcesandAnalyses GeneRegulation,ChromatinandEpigenetics GenomeIntegrity,RepairandReplication Genomics MolecularBiology NucleicAcidEnzymes RNAandRNA-proteincomplexes StructuralBiology SyntheticBiologyandBioengineering MethodsOnline SurveysandSummaries Database WebServer Advancearticles Submit AuthorGuidelines SubmissionSite OpenAccess Purchase About AboutNucleicAcidsResearch EditorialBoard InformationofReferees AdvertisingandCorporateServices JournalsCareerNetwork Alerts Policies Self-ArchivingPolicy DispatchDates Close searchfilter Thisissue AllNucleicAcidsResearch AllNARJournals AllJournals searchinput Search AdvancedSearch SearchMenu ArticleNavigation Closemobilesearchnavigation ArticleNavigation Volume26 Issue4 1February1998 ArticleContents Abstract Introduction ScopeofTheReview Methodology ResultsandDiscussion References Next> ArticleNavigation ArticleNavigation GenomestructureandgenecontentinprotistmitochondrialDNAs MichaelW.Gray, MichaelW.Gray * 1PrograminEvolutionaryBiology,CanadianInstituteforAdvancedResearch,DepartmentofBiochemistry,DalhousieUniversity,Halifax,NovaScotiaB3H4H7,Canada *Towhomcorrespondenceshouldbeaddressed.Tel:+19024942521;Fax:+19024941355;Email:[email protected] Searchforotherworksbythisauthoron: OxfordAcademic PubMed GoogleScholar B.FranzLang, B.FranzLang 2PrograminEvolutionaryBiology,CanadianInstituteforAdvancedResearch,DépartementdeBiochimie,UniversitédeMontréal,Montréal,QuébecH3C3J7,Canada Searchforotherworksbythisauthoron: OxfordAcademic PubMed GoogleScholar RobertCedergren, RobertCedergren 2PrograminEvolutionaryBiology,CanadianInstituteforAdvancedResearch,DépartementdeBiochimie,UniversitédeMontréal,Montréal,QuébecH3C3J7,Canada Searchforotherworksbythisauthoron: OxfordAcademic PubMed GoogleScholar G.BrianGolding, G.BrianGolding 5PrograminEvolutionaryBiology,CanadianInstituteforAdvancedResearch,DepartmentofBiology,McMasterUniversity,Hamilton,OntarioL8S4K1,Canada Searchforotherworksbythisauthoron: OxfordAcademic PubMed GoogleScholar ClaudeLemieux, ClaudeLemieux 6PrograminEvolutionaryBiology,CanadianInstituteforAdvancedResearch,DépartementdeBiochimie,UniversitéLaval,Québec,QuébecG1K7P4,Canada Searchforotherworksbythisauthoron: OxfordAcademic PubMed GoogleScholar DavidSankoff, DavidSankoff 3PrograminEvolutionaryBiology,CanadianInstituteforAdvancedResearch,CentredeRechercheMathématique,UniversitédeMontréal,Montréal,QuébecH3C3J7,Canada Searchforotherworksbythisauthoron: OxfordAcademic PubMed GoogleScholar MoniqueTurmel, MoniqueTurmel 6PrograminEvolutionaryBiology,CanadianInstituteforAdvancedResearch,DépartementdeBiochimie,UniversitéLaval,Québec,QuébecG1K7P4,Canada Searchforotherworksbythisauthoron: OxfordAcademic PubMed GoogleScholar NicolasBrossard, NicolasBrossard 4PrograminEvolutionaryBiology,CanadianInstituteforAdvancedResearch,OGMPSequencingUnit,UniversitédeMontréal,Montréal,QuébecH3C3J7,Canada Searchforotherworksbythisauthoron: OxfordAcademic PubMed GoogleScholar EricDelage, EricDelage 2PrograminEvolutionaryBiology,CanadianInstituteforAdvancedResearch,DépartementdeBiochimie,UniversitédeMontréal,Montréal,QuébecH3C3J7,Canada Searchforotherworksbythisauthoron: OxfordAcademic PubMed GoogleScholar TimG.Littlejohn, TimG.Littlejohn 4PrograminEvolutionaryBiology,CanadianInstituteforAdvancedResearch,OGMPSequencingUnit,UniversitédeMontréal,Montréal,QuébecH3C3J7,Canada Searchforotherworksbythisauthoron: OxfordAcademic PubMed GoogleScholar ...Showmore IsabellePlante, IsabellePlante 4PrograminEvolutionaryBiology,CanadianInstituteforAdvancedResearch,OGMPSequencingUnit,UniversitédeMontréal,Montréal,QuébecH3C3J7,Canada +Presentaddress:AustralianNationalGenomicInformationService(ANGIS),UniversityofSydney,Sydney,NewSouthWales2006,Australia Searchforotherworksbythisauthoron: OxfordAcademic PubMed GoogleScholar PierreRioux, PierreRioux 4PrograminEvolutionaryBiology,CanadianInstituteforAdvancedResearch,OGMPSequencingUnit,UniversitédeMontréal,Montréal,QuébecH3C3J7,Canada Searchforotherworksbythisauthoron: OxfordAcademic PubMed GoogleScholar DianeSaint-Louis, DianeSaint-Louis 4PrograminEvolutionaryBiology,CanadianInstituteforAdvancedResearch,OGMPSequencingUnit,UniversitédeMontréal,Montréal,QuébecH3C3J7,Canada Searchforotherworksbythisauthoron: OxfordAcademic PubMed GoogleScholar YunZhu, YunZhu 4PrograminEvolutionaryBiology,CanadianInstituteforAdvancedResearch,OGMPSequencingUnit,UniversitédeMontréal,Montréal,QuébecH3C3J7,Canada Searchforotherworksbythisauthoron: OxfordAcademic PubMed GoogleScholar GertraudBurger GertraudBurger 2PrograminEvolutionaryBiology,CanadianInstituteforAdvancedResearch,DépartementdeBiochimie,UniversitédeMontréal,Montréal,QuébecH3C3J7,Canada4PrograminEvolutionaryBiology,CanadianInstituteforAdvancedResearch,OGMPSequencingUnit,UniversitédeMontréal,Montréal,QuébecH3C3J7,Canada Searchforotherworksbythisauthoron: OxfordAcademic PubMed GoogleScholar +Presentaddress:AustralianNationalGenomicInformationService(ANGIS),UniversityofSydney,Sydney,NewSouthWales2006,Australia AuthorNotes NucleicAcidsResearch,Volume26,Issue4,1February1998,Pages865–878,https://doi.org/10.1093/nar/26.4.865 Published: 01February1998 Articlehistory Received: 23October1997 Accepted: 21November1997 Published: 01February1998 PDF SplitView Views Articlecontents Figures&tables Video Audio SupplementaryData Cite Cite MichaelW.Gray,B.FranzLang,RobertCedergren,G.BrianGolding,ClaudeLemieux,DavidSankoff,MoniqueTurmel,NicolasBrossard,EricDelage,TimG.Littlejohn,IsabellePlante,PierreRioux,DianeSaint-Louis,YunZhu,GertraudBurger,GenomestructureandgenecontentinprotistmitochondrialDNAs,NucleicAcidsResearch,Volume26,Issue4,1February1998,Pages865–878,https://doi.org/10.1093/nar/26.4.865 SelectFormat Selectformat .ris(Mendeley,Papers,Zotero) .enw(EndNote) .bibtex(BibTex) .txt(Medlars,RefWorks) Downloadcitation Close PermissionsIcon Permissions Share Email Twitter Facebook More NavbarSearchFilter ThisissueAllNucleicAcidsResearch AllNARJournalsAllJournals MobileMicrositeSearchTerm Search SignIn Register Close searchfilter Thisissue AllNucleicAcidsResearch AllNARJournals AllJournals searchinput Search AdvancedSearch SearchMenu Abstract Althoughthecollectionofcompletelysequencedmitochondrialgenomesisexpandingrapidly,onlyrecentlyhasaphylogeneticallybroadrepresentationofmtDNAsequencesfromprotists(mostlyunicellulareukaryotes)becomeavailable.Thisreviewsurveysthe23completeprotistmtDNAsequencesthathavebeendeterminedtodate,commentingonsuchaspectsasmitochondrialgenomestructure,genecontent,ribosomalRNA,introns,transferRNAsandthegeneticcodeandphylogeneticimplications.WealsoillustratetheutilityofacomparativegenomicsapproachtogeneidentificationbyprovidingevidencethatorfBinplantandprotistmtDNAsisthehomologofatp8,thegeneinanimalandfungalmtDNAthatencodessubunit8oftheF0portionofmitochondrialATPsynthase.AlthoughseveralprotistmtDNAs,likethoseofanimalsandmostfungi,areseentobehighlyderived,othersappeartobehaveretainedanumberoffeaturesoftheancestral,proto-mitochondrialgenome.SomeoftheseancestralfeaturesarealsosharedwithplantmtDNA,althoughthelatterhaveevidentlyexpandedconsiderablyinsize,ifnotingenecontent,inthecourseofevolution.ComparativeanalysisofprotistmtDNAsisprovidinganewperspectiveonmtDNAevolution:howtheoriginalmitochondrialgenomewasorganized,whatgenesitcontained,andinwhatwaysitmusthavechangedindifferenteukaryoticphyla. Introduction MitochondrialDNA(mtDNA)isextraordinarilydiverseinsize,genecontentandgenomeorganization(1–5)anditisadauntingpathwaysbywhichthisevolutionarydiversificationhasoccurred.ThepreferredapproachtoansweringsuchevolutionaryquestionsisthroughcomparativeanalysisofcompletemtDNAsequences,whichprovidesagenome-levelperspectiveonsuchissuesaswhatgenesarepresent,howtheyarearranged,whetherthereareintrons(and,ifso,whattypes),howspacersequencesaredistributedandhowlargetheyare,whethersegmentsofthegenomearerepeatedandotherrelevantinformation.Currently,63completemtDNAsequencesareavailablethroughpublicdomaindatabases;however,thephylogeneticrangethatthesesequencesrepresentisbothnarrowandbiased:47(75%)arefromanimalspecies(31vertebrate,16invertebrate);five(8%)arefromfungi;two(3%)arefromplants;onlynine(14%)arefromprotists,inspiteofthefactthatthelattergroupoforganisms(mostlyunicellular)comprisesthebulkofthebiologicaldiversityoftheeukaryoticlineage(6).Thislimitedandhighlynon-representativedatasethasmadeitdifficulttodrawmeaningfulconclusionsabouttheancestralformofthemitochondrialgenome,anecessarystartingpointforinferencesaboutsubsequentmitochondrialgenomeevolution.Toredressthisimbalance,theOrganelleGenomeMegasequencingProgram(OGMP)wasestablishedin1992,havingasaspecificaimthesystematicandcomprehensivedeterminationofcompleteprotistmtDNAsequences.[BriefdescriptionsoftheOGMPandtwoallieddatabases,theProtistImageDatabase(PID)andtheOrganelleGenomeDatabaseProject(GOBASE),appearattheendofthisreview].Atthattimeonlythreecompleteprotistmitochondrialgenomesequenceshadbeenpublished:the6kbmtDNAsequencesoftheapicomplexansPlasmodiumyoelii(arodentparasite)(7)andPlasmodiumfalciparum(thehumanmalariaparasite)(8)andthe40kbmtDNAsequenceoftheciliateprotozoanParameciumaurelia(9).PartialbutextensivemtDNAsequenceinformationwasalsoavailableforanotherciliateprotozoan,Tetrahymenapyriformis,severaltrypanosomatidprotozoa(inthegeneraTrypanosoma,LeishmaniaandCrithidia)andthegreenalga(chlorophyte)Chlamydomonasreinhardtii.TheselimiteddatasuggestedthatprotistmtDNAsmightbeevenmorestructurallyvariablethantheircounterpartsinthemulticellulareukaryoticlineages(1).Intheensuing5years,alargerselectionofcompleteprotistmtDNAsequenceshasbecomeavailablethroughtheeffortsoftheOGMP,acomplementaryFungalMitochondrialGenomeProject(FMGP)(5)andotherresearchgroups.Thisreviewsummarizesandcommentsuponvariousaspectsofprotistmitochondrialgenomestructure,particularlygenecontent,thathaveemergedfromthesenewsequences.Inrecentyearscomprehensivereviewsofanimal(10),fungal(5,11)andplant(12,13)mtDNAshavebeenpublished,butreviewsofprotistmtDNAshavebeenlimitedtospecificgroups,e.g.ciliates(14),trypanosomatids(15)andapicomplexans(16).Becauseprotistsencompassmostofthephylogeneticbreadthoftheeukaryoticlineageand,bydefinition,containanumberofcladeswhoseevolutionarydepthexceedsthatofthetraditionalanimal,plantandfungalkingdoms,itisimportanttosamplewidelywithinthisdisparateassemblagetoobtainaclearperspectiveontherangeofmtDNAstructuraldiversityinprotists,incomparisonwiththemorewidelystudiedmitochondrialgenomesfromothereukaryotes.Thedataassembledhereemphasizethatmostnon-protistmtDNAs,particularlythoseofanimals,aresubstantiallyderivedrelativetomostoftheirprotistcounterparts,havinglostmanygenesthatarecommonlystillfoundinprotistmitochondrialgenomes.Thecompilationprovidedherebetterdefinesthepropertiesofatypicalancestral(i.e.minimallydiverged)protistmtDNAandallowsustosuggestwithgreaterconfidencewhatgeneswerelikelycontainedintheproto-mitochondrialgenome(i.e.thelastcommonancestorofcontemporarymitochondrialgenomes).ScopeofTheReview Table1identifiesthe23completeprotistmtDNAsequencesthattoourknowledgehavebeendeterminedtodate.Thesesequencesencompassareasonablybroadselectionofprotisttaxa,althoughtheystillrepresentonlyafractionofrecognizedprotistlineages(6).Nineofthesesequencesareinthepublicdomain;theremainderareunpublishedonesdeterminedbytheOGMP(eight),theFMGP(two)orotherresearchgroups(four).Aswell,weincludecompletemtDNAsequencesfromrepresentativenon-protistsforpurposesofcomparison.Figure1displaystherelativephylogeneticpositions(totheextentthatthesecanbeinferredorproposedatpresent)oftheprotistslistedinTable1,togetherwithotherprotistspecies,includingfuturecandidatesselectedbytheOGMPforcompletemtDNAsequencing.Methodology Datacollectionandanalysis InthecaseofcompletemtDNAsequencespublishedbyothergroupsanddepositedinthepublicdomainwehaveusedthestandardizedandcorrectedversionsavailableinGOBASE(17;seebelow).Importantly,annotationsaccompanyingthesesequenceshavebeenunifiedwithrespecttogeneandproductnomenclature.Theseparticularsequenceshavealsobeenre-analyzedbyususinginformaticstoolsdevelopedin-houseanddescribedbelow.WiththeexceptionofBLAST(usedforremotedatabasesearches)(18),FASTA(usedfordetailedsequencecomparison)(19)andNIP(theStadennucleotidesequenceanalysispackage)(20),alloftheinformaticstoolsemployedforthiscompilationhavebeendevelopedbytheOGMPSequencingUnit.ManyoftheprogramsmakeuseoftheOGMP‘masterfile’(mf)concept,anASCII-basedsequencefileformatthatintegratesnucleotidesequence,geneannotationsandtechnicalnotes.ThesequenceretrievalandanalysistoolsdevelopedbytheOGMPhaveforthemostpartbeenwritteninthePerlprograminglanguage.Thesetoolsinclude:BBLAST[batchmodeBLASTsearchoftheNationalCenterforBiotechnologyInformation(NCBI)GenBankdatabase];BOB(BLASToutputbrowser);FERRET,BADGERandCLEVER,retrievaltoolsusedinconjunctionwiththeNCBIEntrezdatabase;GOBASE2MF[aprogramforconvertingfromsequencerecordsstoredinSybasetablesofGOBASE(17)intomfformat];CLEANMF(usedtoverifysequencefilesinmfformatastoannotationsyntaxandlogic);PEPPER(fortranslationofproteincodingsequencesandextractionofnon-codingregions);ONIP(commandlineinterfacetotheStadenNIPprogram,usedinthecreationofcodonusagetablesofvariousgeneclasses);CN(sequencecounterandchecker).ForcompilingthebodyofdatapresentedinTable2,anumberofwrapperscriptswerewrittenintheBourneshellscriptlanguage;theseprogramscallupontheabovetoolsandproduceoutputfilesofappropriatelayout.Scriptsthatusegenomesequencefilesinmfformatasinputinclude:CODAT(calculationofA+Tcontentofcodingandnon-codingregions);COTAB[creationofcodonusagetablesofthreetypesofproteincodingregions:genes,intronicopenreadingframes(ORFs)anduniqueORFs];BFASTA(batchFASTAsearch,usedincomparingtheproteinsequencesoftwolibraryfiles);TRNLIST(whichcreatesalistoftRNAgenespresentinagenome).FurtherinformationabouttheseprogramsisavailableattheOGMPwebsite(seebelow).ResultsandDiscussion Mitochondrialgenomestructure CompletesequenceanalysishasprovidedevidenceofbothcircularmappingandlinearmappingprotistmtDNAs,withcircularmappinggenomespredominating(Table2).Amongtheprotistmitochondrialgenomescharacterizedaslinear,nocommonendstructureshavebeenidentified(seeTable2fordetails).TheprotistmtDNAslistedinTable2haveamediansizeof∼40kb,rangingfrom6kbinthethreeapicomplexanspecies(thesmallestknownmtDNAs)to77kbinthechoanoflagellateMonosigabrevicollis.ThemajorityofprotistmtDNAsarecompact,gene-richgenomes,withfewornolargenon-codingregions.Intergenicspacersaregenerallysmallandsparse,accountinginninecasesfor<10%ofthemtDNA,withcodingregionssometimesoverlapping.InAcanthamoebacastellanii,Dictyosteliumdiscoideum,M.brevicollis,ChlamydomonaseugametosandPedinomonasminorallgenesaretranscribedfromthesamestrandofthemtDNA;otherwise,morethanonepotentialtranscriptionunitispresentinprotistmitochondrialgenomes.TheoverallA+Tcontentishigh(>70%in15cases)inprotistmtDNAsandisusuallyelevatedinnon-codingintergenicregionscomparedwithcodingregions(upto1.2-foldhigherinM.brevicollismtDNA).ThenumbersinTable2suggestthat,ingeneral,protistmtDNAshaveevolvedinthedirectionofhigherA+Tcontent. Table1OpeninnewtabDownloadslideCompletelydeterminedmitochondrialgenomesequencesaDescriptionsofanddetailedinformationaboutmanyofthesespeciesmaybefoundattheProtistImageDatabase(PID;URLhttp://megasun.bch.umontreal.ca/protists/).bWherethecompletesequenceisreportedinoneortwopapers,thereferencesarelistedhere;otherwise,relevantcitationscanbeobtainedbyconsultingtheannotationprovidedintheNCBIentry.Datafromunpublishedsequenceswereprovidedby:OGMP,OrganelleGenomeMegasequencingProgram;FMGP,FungalMitochondrialGenomeProject(URLhttp://megasun.bch.umontreal.ca/People/lang/FMGP);RWL,R.W.Lee(DepartmentofBiology,DalhousieUniversity,Halifax,NovaScotia,Canada);YT,Y.Tanaka(InstituteofBiologicalSciences,UniversityofTsukuba,Japan);CL/MT(C.LemieuxandM.Turmel,DépartementdeBiochimie,UniversitéLaval,Québec,Canada);PJM,P.J.Myler(SeattleBiomedicalResearchInstitute,Seattle,WA);DRW,D.R.Wolstenholme(DepartmentofBiology,UniversityofUtah,SaltLakeCity,UT).cDatasummariesandgenemapsfortheindividualOGMPsequencingprojectsareavailableatURLhttp://megasun.bch.umontreal.ca/ogmp/.dP.J.Myler,personalcommunication.Adifferentsequence,assembledfromanumberofseparatesources,isavailableasNCBIaccessionno.M94286.ThesequenceofthetranscribedregionofLeishmaniatarentolaemaxicircleDNAisalsoavailable(accessionno.M101026).Table1OpeninnewtabDownloadslideCompletelydeterminedmitochondrialgenomesequencesaDescriptionsofanddetailedinformationaboutmanyofthesespeciesmaybefoundattheProtistImageDatabase(PID;URLhttp://megasun.bch.umontreal.ca/protists/).bWherethecompletesequenceisreportedinoneortwopapers,thereferencesarelistedhere;otherwise,relevantcitationscanbeobtainedbyconsultingtheannotationprovidedintheNCBIentry.Datafromunpublishedsequenceswereprovidedby:OGMP,OrganelleGenomeMegasequencingProgram;FMGP,FungalMitochondrialGenomeProject(URLhttp://megasun.bch.umontreal.ca/People/lang/FMGP);RWL,R.W.Lee(DepartmentofBiology,DalhousieUniversity,Halifax,NovaScotia,Canada);YT,Y.Tanaka(InstituteofBiologicalSciences,UniversityofTsukuba,Japan);CL/MT(C.LemieuxandM.Turmel,DépartementdeBiochimie,UniversitéLaval,Québec,Canada);PJM,P.J.Myler(SeattleBiomedicalResearchInstitute,Seattle,WA);DRW,D.R.Wolstenholme(DepartmentofBiology,UniversityofUtah,SaltLakeCity,UT).cDatasummariesandgenemapsfortheindividualOGMPsequencingprojectsareavailableatURLhttp://megasun.bch.umontreal.ca/ogmp/.dP.J.Myler,personalcommunication.Adifferentsequence,assembledfromanumberofseparatesources,isavailableasNCBIaccessionno.M94286.ThesequenceofthetranscribedregionofLeishmaniatarentolaemaxicircleDNAisalsoavailable(accessionno.M101026).Inanimals,asexemplifiedbyHomosapiensandMetridiumsenileinTable2,theevolutionarytrendhasclearlybeentowardafurthercompactionofthemitochondrialgenome,bothbylossofgenesandbyvirtualeliminationofintergenicspacers.Conversely,inplants(e.g.Marchantiapolymorpha)thetrendhasbeenintheoppositedirection,withthemtDNAtendingtoincreaseinsize,primarilybyacquisitionofalargeamountofapparentlynon-codingDNAofcurrentlyunknownoriginandfunction(Table2).Intherecentlysequenced366924bpmitochondrialgenomeoftheangiospermArabidopsisthaliana(21),fewergenesareencodedthanarefoundinM.polymorphamtDNA,whichishalfthesize(Table2);overall<10%oftheA.thalianamtDNAhasanassignedcodingfunction.Akeyquestionishowandwhyevolutionhasproducedsuchdivergentmitochondrialgenomepatternsindifferenteukaryoticlines.Genecontent Invertebrateanimals,e.g.H.sapiens(Hsa),themitochondrialgenomecontainsgenesfor13innermitochondrialmembraneproteinsinvolvedinelectrontransportandcoupledoxidativephosphorylation(nad1-6and4L,cob,cox1-3andatp6and8)(Table3),aswellasgenesforlargesubunit(LSU)andsmallsubunit(SSU)rRNAs(rnlandrnsrespectively;Table4).This‘standardset’ofmtDNA-encodedgenes(plusatp9)isalsofoundinfungal(e.g.Allomycesmacrogynus,Ama)mtDNAs,exceptthatcertainascomycetefungi(e.g.Schizosaccharomycespombe,Spo)lackallnadgenes.AnimalandfungalmtDNAsdonotencodea5SrRNA(Table4)nor,withtheexceptionofrps3inA.macrogynusmtDNA(22),dotheycarryanyribosomalproteingenes(Table5).InlandplantmtDNAsafewextrarespiratorychainproteingenesarefound(e.g.nad9andatp1inM.polymorpha;Table3);however,themostnotabledeparturefromanimalandfungalmtDNAsisthepresenceinplantmtDNAofasetofribosomalproteingenes(Table5)aswellasagenefor5SrRNA(rrn5;Table4).InthecaseofM.polymorphamtDNAseveralhomologsofknownmitochondrialgenes(e.g.sdh3,4andyejR,U,V;Tables3and6)wereinitiallyconsideredtobeuniqueORFs(23).Withrespecttogenecontent,protistmtDNAsgenerallyresembleplantratherthananimalorfungalmtDNAs.ThelargestgenerepertoiresofaridentifiedinanymtDNAisthatfoundinthemitochondrialgenomeoftheheterotrophicflagellateReclinomonasamericana(Ram,Tables3–7;24).GenesintheothersequencedmtDNAsareallsubsetsoftheR.americanaset,implyingthattheR.americanapatternisclosesttotheancestralpatternofgenescarriedbytheproto-mitochondrialgenome(24).TheR.americanaresultsalsoindicatethatgeneloss(presumablybytransfertothenucleus)hasoccurredtodifferentextentsindifferentlineages(25),withmanyrespiratorychaingenesandalmostallribosomalproteingeneshavingalreadybeeneliminatedinthecommonancestorofanimalandfungalmtDNAs.InsupportoftheviewthatR.americanamtDNAisancestral(i.e.minimallydiverged)isthehighlyeubacterialcharacterofcertainofitsgenes(e.g.rnpB,encodingtheRNAcomponentofRNaseP)aswellasthepresenceofputativeeubacterialtranslationinitiationsignals(Shine-Dalgarnomotifs;24).Inaddition,asinthecaseofchloroplastgenomes(3,26,27),R.americanamtDNAencodessubunitsofamulti-component,eubacteria-like(α2ββ4)coreRNApolymerase.Incontrast,inothereukaryotesthecoremitochondrialRNApolymeraseisasinglepolypeptide,nuclearDNA-encodedenzymehomologoustobacteriophageT3andT7RNApolymerases(28–32).AlthoughR.americanamtDNAhasalargernumberofgenesthanothersequencedprotistmtDNAs,itisnotablethattheseadditionalgenesareallinvolvedinmitochondrialbiogenesisand/orfunction. Figure1OpeninnewtabDownloadslidePhylogenetichypothesisoftheeukaryoticlineagebasedonultrastructuralandmoleculardata.Organismsaredividedintothreemaingroupsdistinguishedbymitochondrialcristalshape(eitherdiscoidal,flattenedortubular).Unbrokenlinesindicatephylogeneticrelationshipsthatarefirmlysupportedbyavailabledata;brokenlinesindicateuncertaintiesinphylogeneticplacement,resolutionofwhichwillrequireadditionaldata.Colorcodingoforganismalgenusnamesindicatesmitochondrialgenomesthathavebeencompletely(Table1),almostcompletely(Jakoba,NaegleriaandThraustochytrium)orpartially(*)sequencedbytheOGMP(red),theFMGP(black)orothergroups(green).NamesinblueindicatethosespecieswhosemtDNAsarecurrentlybeingsequencedbytheOGMPorarefuturecandidatesforcompletesequencing.Amitochondriateretortamonadsarepositionedatthebaseofthetree,withbrokenarrowsdenotingtheendosymbioticorigin(s)ofmitochondriafromaRickettsia-likeeubacterium.Macrophar.,Macropharyngomonas.Figure1OpeninnewtabDownloadslidePhylogenetichypothesisoftheeukaryoticlineagebasedonultrastructuralandmoleculardata.Organismsaredividedintothreemaingroupsdistinguishedbymitochondrialcristalshape(eitherdiscoidal,flattenedortubular).Unbrokenlinesindicatephylogeneticrelationshipsthatarefirmlysupportedbyavailabledata;brokenlinesindicateuncertaintiesinphylogeneticplacement,resolutionofwhichwillrequireadditionaldata.Colorcodingoforganismalgenusnamesindicatesmitochondrialgenomesthathavebeencompletely(Table1),almostcompletely(Jakoba,NaegleriaandThraustochytrium)orpartially(*)sequencedbytheOGMP(red),theFMGP(black)orothergroups(green).NamesinblueindicatethosespecieswhosemtDNAsarecurrentlybeingsequencedbytheOGMPorarefuturecandidatesforcompletesequencing.Amitochondriateretortamonadsarepositionedatthebaseofthetree,withbrokenarrowsdenotingtheendosymbioticorigin(s)ofmitochondriafromaRickettsia-likeeubacterium.Macrophar.,Macropharyngomonas.TheemergingdatasuggestthatlossofparticulargenesfrommtDNAhappenedanumberoftimes,independently,inthecourseofmitochondrialgenomeevolution.Forexample,sdhgeneshaveonlybeenfoundsofar(Table3)inthemtDNAofacryptophyte[Rhodomonassalina(33)],rhodophytes[theredalgaePorphyrapurpurea(33),Chondruscrispus(34)andCyanidiumcaldarium(35)]andlandplants[M.polymorpha(33,36)],aswellasinR.americanamtDNA(24,33).ThesegenesarenotpresentinA.thalianamtDNA(21)andsofarhavenotbeenidentifiedinother,partiallysequencedangiospermmitochondrialgenomes.Consideringtheproposedphylogeneticpositionsoftheselineages(Fig.1)andthecurrentlimiteddistributionofmtDNA-encodedsdhgenes,weinferthatthesegenesmusthavebeenlostfrommtDNAondifferentoccasions(33). Table2OpeninnewtabDownloadslideCharacteristicsofsequencedmitochondrialgenomesaC,circularmapping;L,linearmapping.bIncludesidentifiedgenes,unidentifiedORFs,intronsandintronORFs.cIncludes492bpsubterminalinvertedrepeatsandterminal40nt3′single-strandextensions(78).dIncludes2208bpterminalinvertedrepeats(OGMP,unpublishedresults).eSequencestartsattheDNAreplicationinitiationloop,whichcontainsatandemarrayof1134bpA+T-richrepeatunits.TerminationsequenceattheotherendofthelinearDNA(estimatedtobe∼200bp)remainsunsequenced(14).fHead-to-tailtandemrepeatsofa6kbunit(82).gLengthofrepeatunit.hExcludingtandemlyarrayedtelomericsequences(31bprepeatunit)ofvariablelength(OGMP,unpublishedresults).i7.1kbDNAelementcontainingincompletelycharacterizedterminalinvertedrepeats(79).jExcludesterminalinvertedrepeatsequences(residues1–59and5783–5895ofZ23263).kIdentificationoffragmentedandscrambledrRNAcodingmodules(seeTable4)isincompleteforthesegenomes;forthatreasontheproportionofcodingversusnon-codingDNAcannotbecalculatedatpresent.Table2OpeninnewtabDownloadslideCharacteristicsofsequencedmitochondrialgenomesaC,circularmapping;L,linearmapping.bIncludesidentifiedgenes,unidentifiedORFs,intronsandintronORFs.cIncludes492bpsubterminalinvertedrepeatsandterminal40nt3′single-strandextensions(78).dIncludes2208bpterminalinvertedrepeats(OGMP,unpublishedresults).eSequencestartsattheDNAreplicationinitiationloop,whichcontainsatandemarrayof1134bpA+T-richrepeatunits.TerminationsequenceattheotherendofthelinearDNA(estimatedtobe∼200bp)remainsunsequenced(14).fHead-to-tailtandemrepeatsofa6kbunit(82).gLengthofrepeatunit.hExcludingtandemlyarrayedtelomericsequences(31bprepeatunit)ofvariablelength(OGMP,unpublishedresults).i7.1kbDNAelementcontainingincompletelycharacterizedterminalinvertedrepeats(79).jExcludesterminalinvertedrepeatsequences(residues1–59and5783–5895ofZ23263).kIdentificationoffragmentedandscrambledrRNAcodingmodules(seeTable4)isincompleteforthesegenomes;forthatreasontheproportionofcodingversusnon-codingDNAcannotbecalculatedatpresent.AsthesortsofcomparativedatabeinggeneratedbycompleteprotistmtDNAsequencingcontinuetoaccumulate,weshouldbeabletodocumentmorepreciselythenumberandtimingofindividualinstancesofmitochondrialgeneloss,manyofwhichundoubtedlyinvolvemitochondriontonucleusgenetransfer.Evennow,theresultssuggestthatgenefluxfrommitochondrialtonucleargenomesisnotonlyawidespreadandon-goingphenomenon,butthatithasbeenbothmoregradualandmorefrequentthanpreviouslyappreciated.Thecox2gene,asoneexample,appearstohavebeenlostfrommtDNAatleastthreetimes(seeTable3):inthelineageleadingtotheApicomplexa,inthePedinomonas/Chlamydomonaslineageofgreenalgaeandincertainlegumes(dicotyledonousplants)(37,38).MostprotistmtDNAscontainanumberofconservedbutunidentifiedORFs(Table6).Especiallynotableinthisregardareymf16(whichhasbeenshowntocodeforamembraneproteinofunknownfunction;39)andymf39,whicharepresentinthemtDNAofmanyprotistsandplants(butnotinanimalorfungalmtDNA).However,mostoftheunidentifiedORFsencounteredduringmitochondrialgenomesequencingareunique:theydonotmatchanysequenceintheproteindatabases.Consideringthenatureanddistributionofidentifiedrespiratorychain(Table3)andribosomalproteingenes(Table5),wesuspectthatatleastsomeoftheseunidentifiedORFsmayrepresenthighlydivergedversionsofknownmtDNA-encodedgenes,nolongerrecognizablebysimilaritysearches.AdditionalcomparativedatashouldhelptoaddressthisquestionandmayultimatelypermitthefunctionalassignmentofconservedORFs,asinthecaseofymf19(orfB;seebelow).Assumingthatfurthergeneassignmentsofthistypecanbemadethroughthiscomparativeapproach,differencesinprotistmtDNAgenecontentcouldturnouttobelesspronouncedthantheyappeartobeatthemoment.RibosomalRNA Withonlyafewexceptions,protistmtDNAsencodeLSUandSSUrRNAswhosepotentialsecondarystructuresdeviateminimallyfromtheireubacterialcounterparts(OGMP,unpublishedresults).ThiscorrespondstowhathasbeenobservedwithplantmitochondrialrRNAs,butstandsinmarkedcontrasttomostfungalbutparticularlyanimalmitochondrialrRNAs(40,41).ClearlyrecognizableinmostprotistmitochondrialLSUrRNAsarethe5′-and3′-terminalregionscorrespondingtothe‘5.8S’and‘4.5S’domainsofaeubacterialcounterpartsuchasEscherichiacoli23SrRNA.TheseterminalregionshavelargelybeeneliminatedfromanimalmitochondrialLSUrRNAs(41).Theseobservationsreinforcetheemergingviewthatthemostancestral(minimallyderived)mitochondrialgenomeswillbefoundamongtheprotists. Table3OpeninnewtabDownloadslideMitochondrialDNA-encodedgenesinvolvedinelectrontransportandcoupledoxidativephosphorylationaaFullorganismnamesarelistedinTable1.▪,genepresent;□pseudogene;○geneabsent.bArabidopsisthalianamtDNA(accessionnosY08501andY08502)lackssdhgenesbutencodesafunctionalcopyofnad7(21).cPyoandTpamtDNAs,whichhavethesamegenecontentasPfamtDNA,arenotlistedinthistable.dThesamegenesarefoundinthemaxicircleDNAofLeishmaniatarentolae(accessionno.M10126).Transcriptsoftrypanosomatidmitochondrialgenesundergopost-transcriptionalUaddition/deletionRNAeditingtogeneratetranslatablemRNAs(83).eInbothT.pyriformisandP.aureliamitochondriathenad1geneissplitintotwopiecesandrearranged(OGMP,unpublishedresults).InT.pyriformis,correspondingtranscriptshavebeenidentified,one(nad1_a)encodingtheN-terminalportionandtheother(nad1_b)specifyingtheC-terminalportionofNADHdehydrogenasesubunit1(J.EdqvistandM.W.Gray,unpublishedresults).fIdentificationofnad3intrypanosomatidmtDNA(84)shouldberegardedastentative(P.J.Myler,personalcommunication).gGenecontainssixin-frameTGAcodons(23);transcriptdetectedbutnotfurtherprocessed(85).hAsingleopenreadingframe(cox1_cox2)encodesbothsubunits1and2ofcytochromecoxidaseinA.castellanii(86)andD.discoideum(87,88)mtDNAs.iorf172(ymf19;89)inM.polymorphamtDNAandorfBinangiospermmtDNA(seetext).Table3OpeninnewtabDownloadslideMitochondrialDNA-encodedgenesinvolvedinelectrontransportandcoupledoxidativephosphorylationaaFullorganismnamesarelistedinTable1.▪,genepresent;□pseudogene;○geneabsent.bArabidopsisthalianamtDNA(accessionnosY08501andY08502)lackssdhgenesbutencodesafunctionalcopyofnad7(21).cPyoandTpamtDNAs,whichhavethesamegenecontentasPfamtDNA,arenotlistedinthistable.dThesamegenesarefoundinthemaxicircleDNAofLeishmaniatarentolae(accessionno.M10126).Transcriptsoftrypanosomatidmitochondrialgenesundergopost-transcriptionalUaddition/deletionRNAeditingtogeneratetranslatablemRNAs(83).eInbothT.pyriformisandP.aureliamitochondriathenad1geneissplitintotwopiecesandrearranged(OGMP,unpublishedresults).InT.pyriformis,correspondingtranscriptshavebeenidentified,one(nad1_a)encodingtheN-terminalportionandtheother(nad1_b)specifyingtheC-terminalportionofNADHdehydrogenasesubunit1(J.EdqvistandM.W.Gray,unpublishedresults).fIdentificationofnad3intrypanosomatidmtDNA(84)shouldberegardedastentative(P.J.Myler,personalcommunication).gGenecontainssixin-frameTGAcodons(23);transcriptdetectedbutnotfurtherprocessed(85).hAsingleopenreadingframe(cox1_cox2)encodesbothsubunits1and2ofcytochromecoxidaseinA.castellanii(86)andD.discoideum(87,88)mtDNAs.iorf172(ymf19;89)inM.polymorphamtDNAandorfBinangiospermmtDNA(seetext).AminorityofprotistmtDNAsencoderRNAgeneswhosestructureand/orthestructureoftheirproductsisveryunusual.The9S(SSU)and12S(LSU)mitochondrialrRNAsoftrypanosomatidprotozoa(e.g.LeishmaniatarentolaeandTrypanosomabrucei)areamongthesmallestandstructurallymostdivergentofknownrRNAs,havingpotentialsecondarystructuresinwhichonlyafewoftheexpectedconservedstructuralelementsareidentifiable(40,41).AlsounusualarethemitochondrialrnlgenesofParameciumaurelia(42,43),Tetrahymenapyriformis(43)andPedinomonasminor(OGMP,unpublishedresults),whicharesplitintotwopiecesthatareseparatedinthegenomeandinterspersedwithothergenes(Table4).ThePedinomonassituationisparticularlyintriguingbecauseamoreextremecaseofrnlfragmentationandscramblingisseeninthemtDNAofaphylogeneticallylaterbranchinggreenalgalgenus,Chlamydomonas(44–46).FragmentedanddispersedrRNAgeneelements,encodedonbothstrandsofthemtDNA,havealsobeenfoundinthesmallapicomplexanmtDNAs(8,47).BecausemostprotistmtDNAsencodeconventional,16S-likeand23S-likerRNAs(theancestralstate),thesedeviantexamplesmustrepresentderivedpatternsofmitochondrialrRNAgenestructureandorganizationwithinthespecificlineagesinwhichtheyoccur.LikeanimalandfungalmtDNAs,mostprotistmtDNAslacka5SrRNAgene,thecurrentexceptions(Table4)beingthechlorophytealgaeProtothecawickerhamii(48)andNephroselmisolivacea(Nol)(M.Turmel,C.OtisandC.Lemieux,unpublishedresults),theredalgaC.crispus(seeTable4,footnoteg)andthejakobidflagellateR.americana(49).Asinthecaseofsdhgenesnotedabove,thesporadicphylogeneticdistributionofmitochondrialrrn5suggeststhatthisgenewaslostfrommtDNAanumberoftimes. Table4OpeninnewtabDownloadslideRNA-encodinggenesinmtDNAaaFullorganismnamesarelistedinTable1.▪,genepresent;○geneabsent.bThesamegenesarepresentinA.thalianamtDNA(21).cPyoandTpamtDNAshavethesamegenecontentasPfamtDNA.dMultiplysplitandrearrangedrnlandrnsgenes→multiplyfragmentedLSUandSSUrRNAs(44–47).eSplit(2piece)andrearrangedrnl(42,43;OGMP,unpublishedresults).fSplit(2piece)rns→split(2piece)SSUrRNA(90,91).gTheoriginalclaimthatC.crispusmtDNAencodesa5SrRNA(34)hassincebeendiscounted(49;seealso4)However,re-analysisoftheC.crispusmtDNAsequencehasnowrevealedageneforabonafide5SrRNA,differentfromthe5SrRNA-likestructureoriginallyproposedbyLeblancetal.(34).TheC.crispusrrn5(complementofresidues16043–16152inZ47547)islocatedbetweenandinthesametranscriptionalorientationasnad3andrps11(G.Burger,unpublishedresults).hB.F.Lang,unpublishedresults.iSmallRNAsthatfunctioninUaddition/deletionRNAediting(83).jThenumberofguideRNAsencodedbytheT.bruceiandL.tarentolaemaxicircleDNAsisthreeand15respectively.ForacompilationoftrypanosomatidguideRNAsseehttp://www.biochem.mpg.de/~goeringe/gRNA/gRNAseqs.html).kGeneencodinga129ntRNAofunknownfunctionislocatedimmediatelydownstreamofrnl(Y.Tanaka,personalcommunication).Table4OpeninnewtabDownloadslideRNA-encodinggenesinmtDNAaaFullorganismnamesarelistedinTable1.▪,genepresent;○geneabsent.bThesamegenesarepresentinA.thalianamtDNA(21).cPyoandTpamtDNAshavethesamegenecontentasPfamtDNA.dMultiplysplitandrearrangedrnlandrnsgenes→multiplyfragmentedLSUandSSUrRNAs(44–47).eSplit(2piece)andrearrangedrnl(42,43;OGMP,unpublishedresults).fSplit(2piece)rns→split(2piece)SSUrRNA(90,91).gTheoriginalclaimthatC.crispusmtDNAencodesa5SrRNA(34)hassincebeendiscounted(49;seealso4)However,re-analysisoftheC.crispusmtDNAsequencehasnowrevealedageneforabonafide5SrRNA,differentfromthe5SrRNA-likestructureoriginallyproposedbyLeblancetal.(34).TheC.crispusrrn5(complementofresidues16043–16152inZ47547)islocatedbetweenandinthesametranscriptionalorientationasnad3andrps11(G.Burger,unpublishedresults).hB.F.Lang,unpublishedresults.iSmallRNAsthatfunctioninUaddition/deletionRNAediting(83).jThenumberofguideRNAsencodedbytheT.bruceiandL.tarentolaemaxicircleDNAsisthreeand15respectively.ForacompilationoftrypanosomatidguideRNAsseehttp://www.biochem.mpg.de/~goeringe/gRNA/gRNAseqs.html).kGeneencodinga129ntRNAofunknownfunctionislocatedimmediatelydownstreamofrnl(Y.Tanaka,personalcommunication).TransferRNAsandthegeneticcode CompletesequencingofanorganellegenomeistheonlywaytodetermineunequivocallywhetherthatgenomeencodesallofthetRNAspeciesnecessarytosupportorganellarproteinsynthesis.SeveralprotistmtDNAs(thoseofM.brevicollis,P.wickerhamii,R.salinaandMalawimonasjakobiformisinTable1)doappeartoencodetheminimalrequiredtRNAset,ifoneallowsthatasingletRNAisabletodecodethefour-codonfamilyspecifyingagivenaminoacid(seeTable7).However,inmostcases,tRNAsrecognizingoneormorecodonsareevidentlyabsentfromthemitochondrialgenome,andtRNAimportfromthecytosolisusuallyinvokedasthemechanismformakingupthedeficit.ImportofnuclearDNA-encodedcytosolictRNAsintomitochondriaisclearlyrequiredinthecaseofA.castellanii,D.discoideum,P.aurelia,T.pyriformis,Chlamydomonasspp.andP.minor,whosemtDNAsencodesubstantiallyfewerthantheminimalrequiredset(Table7);infact,importoftRNAintoTetrahymenamitochondria,longinferredonthebasisoftRNApopulationstudies(50),hasrecentlybeendocumentedexperimentally(51).NotRNAgeneshavebeenfoundinthemitochondrialgenomesofapicomplexanortrypanosomatidprotists,whereimportofafullsetoftRNAsfromthecytoplasmisassumed(52,53).ThedatainTable7indicatethatmitochondrialtRNAimportisnotonlylikelytobewidespreadamongprotists[asitisalsoinplants(54)andseveralchytridiomycetefungi(5)],butthatitemergedearlyintheevolutionofthemitochondrialtranslationsystem,probablyanumberoftimesindependently.GenesforcertaintRNAs(e.g.MetandTrp)areencodedbythemitochondrialgenomesofvirtuallyallprotists,whereasgenesforothertRNAs(notablyThr)arefoundinfrequentlyamongprotistmtDNAs(Table7).Severalprotistmitochondrialgenomes,aswellasthatofM.polymorpha,lackonlyoneortwooftheminimalrequiredsetoftRNAgenes.Again,inthesecasesitisgenerallyheldthatimportofcytosolictRNAsmakesupthedeficit.Indeed,importintoM.polymorphamitochondriahasrecentlybeendocumentedinthecaseofnucleus-encodedtRNAIle(aau)(55)andtRNAThr(agu)(56),genesforwhichhavenotbeenidentifiedinM.polymorphamtDNA(23).However,analternativepossibilitythatshouldbeconsideredisthattheanticodonsequenceinasinglemtDNAencodedtRNAmightbesubjecttopartialediting,suchthattheuneditedandeditedversionsacceptdifferentaminoacidsandpairwithcodonscorrespondingtotheseaminoacids.PartialC→UeditingofatRNA‘Gly’(gcc)togenerateatRNAAsp(guc)inopossummitochondria(57)servesasaprecedentforthispossibility.InA.castellanii,sequencingofthemtDNAhasprovidedevidenceofanoveltypeoftRNAeditingthataffectsmostofthemtDNA-encodedtRNAs(58–62;D.H.PriceandM.W.Gray,unpublishedresults).Thiseditingisconfinedtooneormoreofthefirstthreepositionsatthe5′-endofthetRNA(62).Exceptforthemismatchingintheacceptorstemthatiscorrectedbythisediting,thesecondarystructuresofAcanthamoebamitochondrialtRNAsarequiteconventional(58–62).WhatappearstobethesametypeofmitochondrialtRNAeditinghasrecentlybeendocumentedinthechytridiomycetefungusSpizellomycespunctatus(63)andseveralotherprimitivefungi(B.F.Lang,unpublishedresults);moreover,inthecaseoftRNAsencodedbyD.discoideummtDNAsecondarystructuremodelingstronglysuggeststhatseveraloftheseundergoasimilartypeofediting.OrthodoxcloverleafsecondarystructuresaretheruleformitochondrialtRNAsthroughouttheprotists,onenotablevariantbeinganunusualtRNAMetinTetrahymenamitochondria(64).ThestructurallyaberranttRNAscharacteristicofanimalmitochondria(65,66)arethereforeexceptional,representingahighlyderivedformofmitochondrialtRNAwhich,nevertheless,isabletoassumetherequiredL-shapedtertiarystructure(67). Table5OpeninnewtabDownloadslideRibosomalproteingenesencodedbymtDNAaaFullorganismnamesarelistedinTable1.▪genepresent;□pseudogene;○geneabsent.Smallsubunit-associatedribosomalproteinsarealsoencodedbythemtDNAsofyeast(Saccharomycescerevisiae;var1)andNeurosporacrassa(S-5)(seetableIIIin2);however,theseproteinssharenoobvioussequencesimilaritywithanyknowneubacterialsmallsubunitribosomalprotein.bSeveralofthesegeneshavenotbeenidentifiedinthecompletelysequencedA.thalianamitochondrialgenome(accessionnosY08501andY08502);theseincluderps1,rps2,rps8,rps10,rps11,rps13andrpl6.Twoadditionalgenes(rps14andrps19)arepresentaspseudogenesinA.thalianamtDNA(21).cLikethePfamitochondrialgenome,PyoandTpamtDNAsdonotencodeanyribosomalproteingenes.dSameribosomalproteingenecontentinL.tarentolaemaxicircleDNA(accessionno.M10126).eorf227(previouslynamedurfa;92);G.BurgerandB.F.Lang,unpublishedresults.fNotranscriptdetected(22).gNotreportedintheoriginalpublicationdescribingthisgenome(34).Table5OpeninnewtabDownloadslideRibosomalproteingenesencodedbymtDNAaaFullorganismnamesarelistedinTable1.▪genepresent;□pseudogene;○geneabsent.Smallsubunit-associatedribosomalproteinsarealsoencodedbythemtDNAsofyeast(Saccharomycescerevisiae;var1)andNeurosporacrassa(S-5)(seetableIIIin2);however,theseproteinssharenoobvioussequencesimilaritywithanyknowneubacterialsmallsubunitribosomalprotein.bSeveralofthesegeneshavenotbeenidentifiedinthecompletelysequencedA.thalianamitochondrialgenome(accessionnosY08501andY08502);theseincluderps1,rps2,rps8,rps10,rps11,rps13andrpl6.Twoadditionalgenes(rps14andrps19)arepresentaspseudogenesinA.thalianamtDNA(21).cLikethePfamitochondrialgenome,PyoandTpamtDNAsdonotencodeanyribosomalproteingenes.dSameribosomalproteingenecontentinL.tarentolaemaxicircleDNA(accessionno.M10126).eorf227(previouslynamedurfa;92);G.BurgerandB.F.Lang,unpublishedresults.fNotranscriptdetected(22).gNotreportedintheoriginalpublicationdescribingthisgenome(34).InalmosthalfoftheprotistslistedinTable7weinfer,onthebasisofcodonusageandthepresenceofatRNATrphavingaCCAanticodon,thatthemitochondrialtranslationsystemusesthestandardgeneticcode,asisthecaseinlandplants.IntheremainingprotistsUGAappearstobedecodedastryptophanratherthanasstop(Table7),beingthepreferredTrpcodoninallbutP.aurelia;infact,UCAisusedalmostexlusivelytoencodeTrpinM.brevicollisandT.pyriformismitochondria.FromthephylogeneticdistributionofthiscodevariationitisevidentthatthechangeinUGAcodingmusthaveoccurredonmorethanoneoccasion.Introns ComparedwithplantmtDNA,protistmtDNAsseemtohaveremarkablyfewintrons(Table8).AtleasthalfofthesegenomesentirelylackgroupIandgroupIIintrons.Sofar,amongthe23completelysequencedprotistmtDNAslistedinTable1,groupIintronshaveonlybeenfound(andthenonlyinsmallnumbers)intheamoeboidprotozoaA.castellaniiandD.discoideum,thegreenalgaeP.wickerhamii,N.olivaceaandC.eugametosandthechoanoflagellateM.brevicollis.ProtothecawickerhamiiandM.polymorphamtDNAssharewithoneanother(andwithfungalmtDNA)positionallyequivalentandstructurallyhomologouscox1introns,suggestingthattheseintronshavebeeninheritedverticallyfromamitochondrialancestoroffungi,greenalgaeandplants(68).Ontheotherhand,horizontaltransferofothergroupIintronsissuggestedbythefactthatinthernlgeneofA.castellaniimtDNAandinthechloroplastDNAofcertainChlamydomonasspecies,severalmobilegroupIintronsarenotonlypositionallyidentical,buthavehomologousintroncorestructuresandintronORFs(69).VeryfewgroupIIintronshavebeenfoundinprotistmtDNAs(atotalofsevensuchintronsinfiveof23completelysequencedprotistmtDNAs).Again,wehavesomeevidencesuggestingacquisitionofcertainoftheseintronsbyhorizontaltransfer(OGMP,unpublishedresults),asappearsalsotobethecaseforcertaingroupIIintronsfoundinthernlgeneofthebrownalgaPylaiellalittoralis(70).InourviewthepaucityofgroupIIintronsinprotistmtDNAscoupledwiththeirsporadicdistributionandevidenceofhorizontaltransfermakesitquiteunlikelythattherewasawholesaleacquisitionofgroupIIintronsbytheeukaryoticcellviathea-proteobacteria-likeproto-mitochondrialendosymbiont. Table6OpeninnewtabDownloadslideAdditionalproteingenesencodedbymtDNAaaFullorganismnamesarelistedinTable1.▪genepresent;□pseudogene;○geneabsent.IntronORFsnotincluded(seeTable8).bSameinL.tarentolaemaxicircleDNA.cGeneissplitintothreeseparateORFsinbothM.polymorpha(orf509=ymf4;orf169=ymf3;orf322=ymf2)andA.thaliana(ccb382,ccb203andccb452).M.polymorphaorf509isequivalenttoA.thalianaccb382+ccb203,whereasA.thalianaccb452ishomologoustoM.polymorphaorf169+orf322(21).dorf228=ymf5(ccb256inA.thalianamtDNA;21).eorf277=ymf6(ccb206inA.thalianamtDNA;21).forf244inMpomtDNA.gorf183inMpomtDNA(orf25inangiosperms).hAputativemutShomolog,identifiedinacoralmtDNA(93),hasnotbeenfoundinanyofthesequencedprotistmtDNAslistedinTable1.iORFshowingsimilaritytomitochondrialplasmid-encodedDNApolymerase.jRemnantsofdpogene(94).kCodingsequencedistributedoverthreeseparateORFs(OGMP,unpublishedresults).lORFshowingsimilaritytoreversetranscriptase.mOdaetal.(23).nBoerandGray(95).oCodingsequencedistributedbetweentwoseparateORFs(OGMP,unpublishedresults).pORFshowingsimilaritytoDNAendonucleaseoftypeGIF-YIG(96).qThreeORFsofthistypehavebeenfoundinAmamtDNA(22).rComprising>60codonsandnotoverlappingoneanotherorotheridentifiedgenes.sOnly29ORFs>60codonswerepredictedaspossiblegenesusingadefinedindexofG+Ccontentinthefirst,secondandthirdpositionsofcodons(23).tInthecourseofre-analyzingtheCcrmtDNAsequenceoneofthetwopreviouslyannotated(34)uniqueORFs,orf94,hasbeenidentifiedasrpl20(G.Burger,unpublishedresults).uAnadditional13ORFsinTpy(equivalentto14PauORFs)aredefinedas‘ciliate-specific’(sharedbetweenTpyandPaubutnotothermtDNAs).Ofthe25ORFs(unique+ciliate-specific)inPaumtDNA12werepreviouslyannotated(9),whereasanadditional13havebeenfoundinthecourseofre-analyzingthePaumtDNAsequence(G.Burger,unpublishedresults).Table6OpeninnewtabDownloadslideAdditionalproteingenesencodedbymtDNAaaFullorganismnamesarelistedinTable1.▪genepresent;□pseudogene;○geneabsent.IntronORFsnotincluded(seeTable8).bSameinL.tarentolaemaxicircleDNA.cGeneissplitintothreeseparateORFsinbothM.polymorpha(orf509=ymf4;orf169=ymf3;orf322=ymf2)andA.thaliana(ccb382,ccb203andccb452).M.polymorphaorf509isequivalenttoA.thalianaccb382+ccb203,whereasA.thalianaccb452ishomologoustoM.polymorphaorf169+orf322(21).dorf228=ymf5(ccb256inA.thalianamtDNA;21).eorf277=ymf6(ccb206inA.thalianamtDNA;21).forf244inMpomtDNA.gorf183inMpomtDNA(orf25inangiosperms).hAputativemutShomolog,identifiedinacoralmtDNA(93),hasnotbeenfoundinanyofthesequencedprotistmtDNAslistedinTable1.iORFshowingsimilaritytomitochondrialplasmid-encodedDNApolymerase.jRemnantsofdpogene(94).kCodingsequencedistributedoverthreeseparateORFs(OGMP,unpublishedresults).lORFshowingsimilaritytoreversetranscriptase.mOdaetal.(23).nBoerandGray(95).oCodingsequencedistributedbetweentwoseparateORFs(OGMP,unpublishedresults).pORFshowingsimilaritytoDNAendonucleaseoftypeGIF-YIG(96).qThreeORFsofthistypehavebeenfoundinAmamtDNA(22).rComprising>60codonsandnotoverlappingoneanotherorotheridentifiedgenes.sOnly29ORFs>60codonswerepredictedaspossiblegenesusingadefinedindexofG+Ccontentinthefirst,secondandthirdpositionsofcodons(23).tInthecourseofre-analyzingtheCcrmtDNAsequenceoneofthetwopreviouslyannotated(34)uniqueORFs,orf94,hasbeenidentifiedasrpl20(G.Burger,unpublishedresults).uAnadditional13ORFsinTpy(equivalentto14PauORFs)aredefinedas‘ciliate-specific’(sharedbetweenTpyandPaubutnotothermtDNAs).Ofthe25ORFs(unique+ciliate-specific)inPaumtDNA12werepreviouslyannotated(9),whereasanadditional13havebeenfoundinthecourseofre-analyzingthePaumtDNAsequence(G.Burger,unpublishedresults).Acomparativegenomicsapproachtogeneidentification:thecaseoforfBandatp8 AccumulatingsequencedataareaidingintheidentificationofsomeoftheunassignedORFsthathavebeenuncoveredinthecourseofsequencingmitochondrialgenomes.AsanexampleweprovideevidenceherethatorfB,aconservedgeneofunknownfunctionoriginallyidentifiedinplantmtDNA(seeTable3,footnotei),isthehomologofatp8,whichencodessubunit8oftheF0portionoftheATPsynthase.ThelattergenehasbeenfoundinanumberofanimalandfungalmtDNAs,butuptonowhasnotbeenidentifiedinplantorprotistmitochondrialgenomes.Conversely,orfBisfoundinalmostallplantandprotistmtDNAs,butnotinthoseofanimalsorfungi.BothAtp8andOrfBproteinsarecharacterizedbythesameblockofthreeidenticalaminoacidsattheN-terminus,followedbyanotherwisequitevariablesequence(Fig.2).TheknownOrfBproteinsofplantsdifferfromAtp8essentiallyintheirincreasedlength.BecausethereisalsomuchlengthvariationamongOrfBhomologsinsomeprotistmtDNAs,wewerepromptedtoassessthepossibilitythatatp8andorfBarehomologousgenes. Table7OpeninnewtabDownloadslideTransferRNAgenesencodedbymtDNAaaSeeTable1forcompleteorganismnames.▪genepresent;○geneabsent.Aminoacylationspecificity(a.a.)isindicatedbythestandardonelettersymbolsforaminoacids(Me,elongatormethionine;Mf,initiatormethionine).ThepredictedanticodonofeachtRNAisshowninlowercaseletters,withthepredictedcodon(s)thatwouldberecognizedshowninuppercaseletters(N=anynucleotide;R=AorG;Y=CorU).Expandedwobblebasepairingisassumed,suchthatanticodonsbeginningwithuridineareconsideredtorecognizeallcodonsinafour-codonfamily.bDuplicateidenticalgenes.cDuplicatenon-identicalgenes.dTriplicategenes,twoofwhichareidentical,thethirddifferingbyasingleT→Ctransition.eGenomespecifiesasingletrnM(cau).fCinthefirstpositionoftheanticodonpresumedtobemodifiedtolysidine,whichconvertsthetRNAtoanAUA-decodingisoleucineacceptor(97).gAinfirstthepositionoftheanticodonpresumedtobemodifiedtoinosine,withtheresultingtRNAabletopairwithcodonsendinginC,UandA,andperhapsalsoG(see98).htrnK(cuu),thecorrespondingtRNAofwhichwouldbeexpectedtorecognizeAAGbutnotAAA(61).iOnlyUGGTrpcodonsappearinconservedproteincodinggenesinS.pombemtDNA,however,severalUGAcodonsoccurinrps3andintronORFs(92).jBothUGGandUGAaredecodedasTrpinA.castellaniimitochondria(61),whereasthetRNAspecifiedbytrnW(cca)wouldbeexpectedtorecognizeonlyUGG.kIncludesatrnL(aag)notlistedinthetable.lIncludesapresumptivetrnEpseudogene,unrelatedinsequencetoauthentictrnE.mIncludesatrnI(uau)notlistedinthetable.nTranscriptsofmostAcamitochondrialtRNAgenes(12of15)undergosubstitutionalRNAeditingatoneormoreofthefirstthreepositionsoftheacceptorstem(61,64;D.H.PriceandM.W.Gray,unpublishedresults).TranscriptsofatleasthalfoftheDdimitochondrialtRNAgenesarepredictedtoundergoasimilartypeofediting.oIncludesatrnX(uuua)pseudogene(D.H.PriceandM.W.Gray,unpublishedresults),thetranscriptofwhichispredictedtohavean8ntanticodonloop(61).pIncludesanunusualtRNA-likeelementwhoseanticodonsequencewouldpairwithUAAandUAG(99),whicharenormallyterminationcodons.qIncludesatrnI(aau)notlistedinthetable.rIncludesatrnX(cua),thecorrespondingtRNAofwhichwouldbeexpectedtorecognizeUAG(normallyaterminationcodon).sIncludesatrnL(gag)notlisted.Table7OpeninnewtabDownloadslideTransferRNAgenesencodedbymtDNAaaSeeTable1forcompleteorganismnames.▪genepresent;○geneabsent.Aminoacylationspecificity(a.a.)isindicatedbythestandardonelettersymbolsforaminoacids(Me,elongatormethionine;Mf,initiatormethionine).ThepredictedanticodonofeachtRNAisshowninlowercaseletters,withthepredictedcodon(s)thatwouldberecognizedshowninuppercaseletters(N=anynucleotide;R=AorG;Y=CorU).Expandedwobblebasepairingisassumed,suchthatanticodonsbeginningwithuridineareconsideredtorecognizeallcodonsinafour-codonfamily.bDuplicateidenticalgenes.cDuplicatenon-identicalgenes.dTriplicategenes,twoofwhichareidentical,thethirddifferingbyasingleT→Ctransition.eGenomespecifiesasingletrnM(cau).fCinthefirstpositionoftheanticodonpresumedtobemodifiedtolysidine,whichconvertsthetRNAtoanAUA-decodingisoleucineacceptor(97).gAinfirstthepositionoftheanticodonpresumedtobemodifiedtoinosine,withtheresultingtRNAabletopairwithcodonsendinginC,UandA,andperhapsalsoG(see98).htrnK(cuu),thecorrespondingtRNAofwhichwouldbeexpectedtorecognizeAAGbutnotAAA(61).iOnlyUGGTrpcodonsappearinconservedproteincodinggenesinS.pombemtDNA,however,severalUGAcodonsoccurinrps3andintronORFs(92).jBothUGGandUGAaredecodedasTrpinA.castellaniimitochondria(61),whereasthetRNAspecifiedbytrnW(cca)wouldbeexpectedtorecognizeonlyUGG.kIncludesatrnL(aag)notlistedinthetable.lIncludesapresumptivetrnEpseudogene,unrelatedinsequencetoauthentictrnE.mIncludesatrnI(uau)notlistedinthetable.nTranscriptsofmostAcamitochondrialtRNAgenes(12of15)undergosubstitutionalRNAeditingatoneormoreofthefirstthreepositionsoftheacceptorstem(61,64;D.H.PriceandM.W.Gray,unpublishedresults).TranscriptsofatleasthalfoftheDdimitochondrialtRNAgenesarepredictedtoundergoasimilartypeofediting.oIncludesatrnX(uuua)pseudogene(D.H.PriceandM.W.Gray,unpublishedresults),thetranscriptofwhichispredictedtohavean8ntanticodonloop(61).pIncludesanunusualtRNA-likeelementwhoseanticodonsequencewouldpairwithUAAandUAG(99),whicharenormallyterminationcodons.qIncludesatrnI(aau)notlistedinthetable.rIncludesatrnX(cua),thecorrespondingtRNAofwhichwouldbeexpectedtorecognizeUAG(normallyaterminationcodon).sIncludesatrnL(gag)notlisted. Table8OpeninnewtabDownloadslideIntronsandintronORFsinmtDNAaaFullorganismnamesarelistedinTable1.bAgroupIintroninnad5containsnad1andnad3genes(100).Table8OpeninnewtabDownloadslideIntronsandintronORFsinmtDNAaaFullorganismnamesarelistedinTable1.bAgroupIintroninnad5containsnad1andnad3genes(100).TheN-terminalfunctionaldomain(71)ofATPsynthasesubunit8iswellconservedindifferentfungicomparedwiththecentralhydrophobicdomain(72)andtheC-terminaldomain(73).Thelatterdomaincontainsaregionenrichedinpositivelychargedaminoacidresidues(73),whicharethoughttoplayanimportantroleinassemblyoftheF0complex(seebelow).IfOrfBisindeedhomologoustoAtp8,weshouldfindsimilaraminoacidsignaturesinamultiplealignmentofaphylogeneticallydiversecollectionofbothtypesofsequences.SuchacollectionhasrecentlybecomeavailablethroughthesequencingeffortsoftheOGMPandFMGP.AsshowninFigure2,thehighlyconservedN-terminaldomainprovidesthebestevidenceforhomologybetweenorfBandatp8.Furtherevidencesupportingthisinferenceisthepresenceofperfectlyalignedcentralhydrophobicandpositivelychargeddomains.Basedonthealignmentofthefirst57aminoacidsshowninFigure2,wesuggestthatthereislittlebasisforadistinctionbetweenthe‘Atp8’and‘OrfB’classesofprotein.Withtwonotableexceptions,thissequencecompilationfurtherdemonstratesthatalongC-terminalextension(position78andbeyondinFig.2)isonlyfoundamongplantsandprotists.InthestramenopilesCafeteriaroenbergensisandOchromonasdanicathemtDNAcodesforashorterprotein,aboutaslongasthelongestfungalsequences.Thisfeatureisnotcladespecificbecauseinanotherstramenopile,Phytophthorainfestans,themitochondrialgenomespecifiesanAtp8proteinthatisrathertypicalinsizeforprotists.TheC-terminalextensionisnotonlyquitevariableinsize,butindeedissodivergentinsequencethatitcanonlybereasonablywellalignedamongverycloselyrelatedspecies(e.g.landplants).ThusthepresenceorabsenceofaC-terminalextensionalsodoesnotdistinguishbetween‘Atp8’and‘OrfB’classes.ConservedsequencemotifswithinthehydrophobicandC-terminaldomainsoftheAtp8/OrfBproteinarerestrictedtotheboundariesbetweenthesedomains,the‘LPmotif’(71),whichisimmediatelyfollowedbyaregionwithoneorseveralpositivelychargedaminoacids.Previousstudiesinfungihaveshownthatthesepositivelychargedaminoacidsplayanimportantroleinassemblyofsubunits6,8and9(73).Insummary,plantandprotistmitochondrialOrfBproteinscontainalloftheconservedsequenceelementscharacteristicofanimalandfungalAtp8proteins.ThustheorfBgenerepresentsthebestcandidateforthepreviously‘missing’atp8homologinplantandprotistmtDNAs.Phylogeneticimplications ThemitochondrialgenecontentandgenomeorganizationdatabeinggeneratedbytheOGMPandothergroupsareservingtofurtherclarifyourviewsabouttheoriginandevolutionofthemitochondrialgenome.OneexampleinvolvestherelationshipbetweenlandplantandChlamydomonasmtDNAs,whicharesodifferentinstructure,organizationandmodeofexpressionthattheyshowlittleevidenceofhavingacommonevolutionaryorigin(1,2,74).Intheabsenceofaphylogeneticallybroaddatabaseofcomparativeinformationweatonetimeentertainedthepossibilitythattheplantmitochondrialgenomemighthavehadadifferent,morerecentevolutionaryancestrythanChlamydomonasandothermitochondrialgenomes(75).However,sequencingofP.wickerhamii(48)andother(24,34,61)protistmtDNAshasclearlydemonstratedthatplantmtDNAhasretainedanancestralpatternthathasevidentlybeenlostinthemorerapidlyevolvingandhighlyderivedChlamydomonasmtDNA(74).ItisworthemphasizingthatthemajorityoftheprotistmtDNAssequencedtodatebytheOGMP,particularlythosefrommoreobscureprotistsselectedfromthewildonthebasisofultrastructuralorotherphylogeneticconsiderations,retainamoreorlessancestralpatternofgenecontentandorganization.Incontrast,mostofthemtDNAsthathadbeensequencedpriortotheinceptionoftheOGMP(thosefromanimals,mostfungi,chlamydomonadaleangreenalgae,ciliatesandtrypanosomatidprotozoa)arehighlyderived.Itiscuriousthatthemajorityoftheprotiststhathavebeenselectedasmodelsforbiochemical,geneticandmolecularbiologicalresearchhappentohavemtDNAsthataretheleastrepresentativeoftheancestralform.Descriptions OrganelleGenomeMegasequencingProgram(OGMP)(http://megasun.bch.umontreal.ca/ogmp/).TheOGMPwasinitiatedasamulti-disciplinaryandinter-universityconsortiumofCanadianinvestigatorsinterestedinorganellegenomeevolutionandeukaryoticphylogeny.AscurrentlyconstituteditconsistsofaTeam(B.F.Lang,administrativecoordinator;M.W.Gray,scientificcoordinator;G.Burger,C.LemieuxandM.Turmel)andanAdvisoryBoard(R.Cedergren,G.B.Golding,D.Sankoff,T.G.LittlejohnandC.J.O'Kelly),withexternalcollaboratorsonsomeindividualprojects.TheexperimentalarmoftheOGMP,theSequencingUnit(directedbyG.Burger),islocatedintheDépartementdeBiochimie,UniversitédeMontréal.TheSequencingUnitcomprisestwodivisions:MolecularBiology(I.Plante,D.Saint-LouisandY.Zhu),whichconstructsclonelibraries,performstheactualsequencingandworksoutimprovedcloningandsequencingmethods;Informatics(N.BrossardandP.Rioux),whichdevelopsandimplementstoolsrequiredforprojectmanagement,datahandling,sequenceanalysisandannotation.AsthedataproductionarmoftheOGMP,theSequencingUnitdeliversanalyzedandfullyannotatedmitochondrialgenomesequencesforsubmissiontopublicdomaindatabases.TheOGMPwebsite(URLgivenabove)containsadditionalinformationabouttheprogram,aswellasdatasummariesandgenemapsfortheindividualOGMPsequencingprojectscompletedtodate(Table1). Figure2OpeninnewtabDownloadslideAlignmentofAtp8andOrfBaminoacidsequences.Sequencesfrombacteria(B),protists(P),landplants(L),fungi(F)andanimals(A)arecompared.ThreeletterabbreviationsoforganismnamesarelistedinTable1.Additionalabbreviations:Rru,Rhodospirillumrubrum;Bvu,Betavulgaris;Rst,Rhizopusstolonifer;Rss,Rhizophydiumssp.;Hss,Harpochytriumssp.;Sco,Schizophyllumcommune;Spu,Spizellomycespunctatus;Ani,Aspergillusnidulans;Sce,Saccharomycescerevisiae;Pli,Paracentrotuslividus.SequenceswereobtainedfromtheNCBIdatabasesexceptforPin,Mbr,Rst,Rru,Hss,ScoandSpu,whichareunpublishedFMGPsequences,andMja,Rsa,Cro,OdaandPpu,whichareunpublishedOGMPsequences.Colorhighlightingisasfollows:blue,invariantaminoacids;magenta,identicalresiduescomprisingatleast10(40%ormore)ofthetotalnumberofresiduesinagivencolumn(alsocoloredinmagentaarethoseresiduesthataccordingtothePAMmatrixarepositiveorneutralexchangeswithreferencetothemostabundantresidueinthecolumn);yellow,positivelychargedaminoacids.Dashes(−)denoteamissingresidueatthispositionincomparisonwithothersequence(s).Asterisks(*)marktranslationterminationcodons;numbersprecedinganasteriskindicatetheremaininglengthofsequencethatisnotshown.Figure2OpeninnewtabDownloadslideAlignmentofAtp8andOrfBaminoacidsequences.Sequencesfrombacteria(B),protists(P),landplants(L),fungi(F)andanimals(A)arecompared.ThreeletterabbreviationsoforganismnamesarelistedinTable1.Additionalabbreviations:Rru,Rhodospirillumrubrum;Bvu,Betavulgaris;Rst,Rhizopusstolonifer;Rss,Rhizophydiumssp.;Hss,Harpochytriumssp.;Sco,Schizophyllumcommune;Spu,Spizellomycespunctatus;Ani,Aspergillusnidulans;Sce,Saccharomycescerevisiae;Pli,Paracentrotuslividus.SequenceswereobtainedfromtheNCBIdatabasesexceptforPin,Mbr,Rst,Rru,Hss,ScoandSpu,whichareunpublishedFMGPsequences,andMja,Rsa,Cro,OdaandPpu,whichareunpublishedOGMPsequences.Colorhighlightingisasfollows:blue,invariantaminoacids;magenta,identicalresiduescomprisingatleast10(40%ormore)ofthetotalnumberofresiduesinagivencolumn(alsocoloredinmagentaarethoseresiduesthataccordingtothePAMmatrixarepositiveorneutralexchangeswithreferencetothemostabundantresidueinthecolumn);yellow,positivelychargedaminoacids.Dashes(−)denoteamissingresidueatthispositionincomparisonwithothersequence(s).Asterisks(*)marktranslationterminationcodons;numbersprecedinganasteriskindicatetheremaininglengthofsequencethatisnotshown.ProtistImageDatabase(PID)(http://megasun.bch.umontreal.ca/protists/).ThePID(T.G.LittlejohnandC.J.O'Kelly)isacompilationofimagesandshortdescriptionsofselectedprotistgenera,especiallythosewhosespeciesarefrequentlyusedasexperimentalorganismsorareimportantinstudiesoforganismalevolution.TheintentofthePIDistoprovideintegratedon-lineinformationaboutthemorphology,taxonomyandphylogeneticrelationshipsoftheseorganisms.ThePID,whichwasinitiatedwithintheOGMP,containsdescriptionsofmostofthespecieswhosemtDNAshavebeensequencedbytheOGMP.ThePIDisbeingcontinuedindependentlyfrombutinclosecollaborationwiththeOGMP,withitswebpagesmaintainedontheOGMPwebserver.OrganelleGenomeDatabaseProject(GOBASE)(http://megasun.bch.umontreal.ca/gobase/).ShortlyaftertheOGMPwasestablisheditbecameapparentthattherewereseriouslimitationsinaccessingalloftherelevantinformationassociatedwithorganelles.Dataaredispersedamonganumberofsources(WorldWideWeb,publicdatarepositories,scientificjournalsandbooks)andinmanycasesaredifficulteventolocate.Usuallyonlylimitedlinksexistamongdatasources(e.g.thereisnoeasywaytoconnectfromaGenBankrecordcontaininganrRNAsequencetothecorrespondingsecondarystructurecontainedinanotherdatabase).Itisevenmoredifficulttoperformthesortofcross-genomecomparisonsthatwereessentialforthepresentreview.Further,thedatasetsareoftenincompleteand/orcontainerrors,whicharesometimeshardtoidentifyandtorectifyintheunderlyingdatasource.Insuchadisorganizedstateorganellegenomicdataconstituteamajorunderexploitedinformationresource.TheGOBASEproject(17)wasinitiatedbyasubsetofOGMPmembers(B.F.Lang,M.W.Gray,G.BurgerandT.G.Littlejohn)torectifythissituation.GOBASE,whichisataxonomicallybroaddatabasethatorganizesandintegratesdiversedatarelatedtoorganelles,hasbeenconstructedasarelationaldatabasewithaweb-baseduserinterface.Thecurrentversionfocusesonthemitochondrialsubsetofdata.References 1GrayM.W.. , Annu.Rev.CellBiol., 1989, vol. 5 (pg. 25-50)CrossrefSearchADSPubMed 2GrayM.W.. , Int.Rev.Cytol., 1992, vol. 141 (pg. 233-357)PubMed 3GillhamN.W.. , OrganelleGenesandGenomes, 1994NewYork,NYOxfordUniversityPressGoogleScholarGooglePreviewOpenURLPlaceholderTextWorldCatCOPAC 4LeblancC., RichardO., KloaregB., ViehmannS., ZetscheK., BoyenC.. , Curr.Genet., 1997, vol. 31 (pg. 193-207)CrossrefSearchADSPubMed 5PaquinB., LaforestM.-J., ForgetL., RoewerI., WangZ., LongcoreJ., LangB.F.. , Curr.Genet., 1997, vol. 31 (pg. 380-395)CrossrefSearchADSPubMed 6PattersonD.J., SoginM.L.. HartmanH., MatsunoK.. , TheOriginandEvolutionoftheCell, 1992Singapore,SingaporeWorldScientific(pg. 13-46)GoogleScholarGooglePreviewOpenURLPlaceholderTextWorldCatCOPAC 7VaidyaA.B., AkellaR., SuplickK.. , Mol.Biochem.Parasitol., 1989, vol. 35 (pg. 97-108)CrossrefSearchADSPubMed 8FeaginJ.E., WernerE., GardnerM.J., WilliamsonD.H., WilsonR.J.M.. , NucleicAcidsRes., 1992, vol. 20 (pg. 879-887)CrossrefSearchADSPubMed 9PritchardA.E., SeilhamerJ.J., MahalingamR., SableC.L., VenutiS.E., CummingsD.J.. , NucleicAcidsRes., 1990, vol. 18 (pg. 173-180)CrossrefSearchADSPubMed 10WolstenholmeD.R.. , Int.Rev.Cytol., 1992, vol. 141 (pg. 173-216)PubMed 11Clark-WalkerG.D.. , Int.Rev.Cytol., 1992, vol. 141 (pg. 89-127)PubMed 12HansonM.R., FolkertsO.. , Int.Rev.Cytol., 1992, vol. 141 (pg. 129-172) 13WolstenholmeD.R., FauronC.M.-R.. LevingsC.S., VasilI.K.. , TheMolecularBiologyofPlantMitochondria, 1995Dordrecht,TheNetherlandsKluwerAcademicPublishers(pg. 1-59)GoogleScholarGooglePreviewOpenURLPlaceholderTextWorldCatCOPAC 14CummingsD.J.. , Int.Rev.Cytol., 1992, vol. 141 (pg. 1-64)PubMed 15StuartK., FeaginJ.E.. , Int.Rev.Cytol., 1992, vol. 141 (pg. 65-88)PubMed 16FeaginJ.E.. , Annu.Rev.Microbiol., 1994, vol. 48 (pg. 81-104)CrossrefSearchADSPubMed 17Korab-LaskowskaM., RiouxP., BrossardN., LittlejohnT.G., GrayM.W., LangB.F., BurgerG.. , NucleicAcidsRes., 1998, vol. 26 (pg. 139-146)CrossrefSearchADS 18AltschulS.F., GishW., MillerW., MyersE.W., LipmanD.J.. , J.Mol.Biol., 1990, vol. 215 (pg. 403-410)CrossrefSearchADSPubMed 19PearsonW.R.. , MethodsEnzymol., 1990, vol. 183 (pg. 63-98)PubMed 20StadenR.. , MethodsEnzymol., 1990, vol. 183 (pg. 193-211)PubMed 21UnseldM., MarienfeldJ.R., BrandtP., BrennickeA.. , NatureGenet., 1997, vol. 15 (pg. 57-61)CrossrefSearchADS 22PaquinB., LangB.F.. , J.Mol.Biol., 1996, vol. 255 (pg. 688-701)CrossrefSearchADSPubMed 23OdaK., YamatoK., OhtaE., NakamuraY., TakemuraM., NozatoN., AkashiK., KanegaeT., OguraY., KohchiT., OhyamaK.. , J.Mol.Biol., 1992, vol. 223 (pg. 1-7)CrossrefSearchADSPubMed 24LangB.F., BurgerG., O'KellyC.J., CedergrenR., GoldingG.B., LemieuxC., SankoffD., TurmelM., GrayM.W.. , Nature, 1997, vol. 387 (pg. 493-497)CrossrefSearchADSPubMed 25PalmerJ.D.. , Nature, 1997, vol. 387 (pg. 454-455)CrossrefSearchADSPubMed 26BogoradL.. BogoradL., VasilI.K.. , TheMolecularBiologyofPlastids, 1991SanDiego,CAAcademicPressInc.(pg. 93-124)GoogleScholarGooglePreviewOpenURLPlaceholderTextWorldCatCOPAC 27ReithM.. , Annu.Rev.PlantPhysiol.PlantMol.Biol., 1995, vol. 46 (pg. 549-575)CrossrefSearchADS 28MastersB.S., StohlL.L., ClaytonD.A.. , Cell, 1987, vol. 51 (pg. 89-99)CrossrefSearchADSPubMed 29ChenB., KubelikA.R., MohrS., BreitenbergerC.A.. , J.Biol.Chem., 1996, vol. 271 (pg. 6537-6544)CrossrefSearchADSPubMed 30CermakianN., IkedaT.M., CedergrenR., GrayM.W.. , NucleicAcidsRes., 1996, vol. 24 (pg. 648-654)CrossrefSearchADSPubMed 31WeiheA., HedtkeB., BörnerT.. , NucleicAcidsRes., 1997, vol. 25 (pg. 2319-2325)CrossrefSearchADSPubMed 32HedtkeB., BörnerT., WeiheA.. , Science, 1997, vol. 277 (pg. 809-811)CrossrefSearchADSPubMed 33BurgerG., LangB.F., ReithM., GrayM.W.. , Proc.Natl.Acad.Sci.USA, 1996, vol. 93 (pg. 2328-2332)CrossrefSearchADS 34LeblancC., BoyenC., RichardO., BonnardG., GrienenbergerJ.-M., KloaregB.. , J.Mol.Biol., 1995, vol. 250 (pg. 484-495)CrossrefSearchADSPubMed 35ViehmannS., RichardO., BoyenC., ZetscheK.. , Curr.Genet., 1996, vol. 29 (pg. 199-201)CrossrefSearchADSPubMed 36Daignan-FornierB., ValensM., LemireB.D., Bolotin-FukuharaM.. , J.Biol.Chem., 1994, vol. 269 (pg. 15469-15472)PubMed 37NugentJ.M., PalmerJ.D.. , Cell, 1991, vol. 66 (pg. 473-481)CrossrefSearchADSPubMed 38CovelloP.S., GrayM.W.. , EMBOJ., 1982, vol. 11 (pg. 3815-3820) 39PrioliL.M., HuangJ., LevingsC.S.. , PlantMol.Biol., 1993, vol. 23 (pg. 287-295)CrossrefSearchADSPubMed 40GutellR.R.. , NucleicAcidsRes., 1994, vol. 22 (pg. 3502-3507)CrossrefSearchADSPubMed 41GutellR.R., GrayM.W., SchnareM.N.. , NucleicAcidsRes., 1993, vol. 21 (pg. 3055-3074)CrossrefSearchADSPubMed 42SeilhamerJ.J., GutellR.R., CummingsD.J.. , J.Biol.Chem., 1984, vol. 259 (pg. 5173-5172)PubMed 43HeinonenT.Y.K., SchnareM.N., YoungP.G., GrayM.W.. , J.Biol.Chem., 1987, vol. 262 (pg. 2879-2887)PubMed 44BoerP.H., GrayM.W.. , Cell, 1988, vol. 55 (pg. 399-411)CrossrefSearchADSPubMed 45Denovan-WrightE.M., LeeR.W.. , J.Mol.Biol., 1994, vol. 241 (pg. 298-311)CrossrefSearchADSPubMed 46NedelcuA.M.. , Mol.Biol.Evol., 1997, vol. 14 (pg. 506-517)CrossrefSearchADSPubMed 47FeaginJ.E., MericleB.L., WernerE., MorrisM.. , NucleicAcidsRes., 1997, vol. 25 (pg. 438-446)CrossrefSearchADSPubMed 48WolffG., PlanteI., LangB.F., KückU., BurgerG.. , J.Mol.Biol., 1994, vol. 237 (pg. 75-86)CrossrefSearchADSPubMed 49LangB.F., GoffL.J., GrayM.W.. , J.Mol.Biol., 1996, vol. 261 (pg. 607-613)CrossrefSearchADS 50SuyamaY.. , Curr.Genet., 1986, vol. 10 (pg. 411-420)CrossrefSearchADSPubMed 51RusconiC.P., CechT.R.. , GenesDev., 1996, vol. 10 (pg. 2870-2880)CrossrefSearchADSPubMed 52SimpsonA.M., SuyamaY., DewesH., CampbellD.A., SimpsonL.. , NucleicAcidsRes., 1989, vol. 17 (pg. 5427-5445)CrossrefSearchADSPubMed 53HancockK., HajdukS.L.. , J.Biol.Chem., 1990, vol. 265 (pg. 19208-19215)PubMed 54DietrichA., WeilJ.H., Maréchal-DrouardL.. , Annu.Rev.CellBiol., 1992, vol. 8 (pg. 115-131)CrossrefSearchADSPubMed 55AkashiK., SakuraiK., HirayamaJ., FukuzawaH., OhyamaK.. , Curr.Genet., 1996, vol. 30 (pg. 181-185)CrossrefSearchADSPubMed 56AkashiK., HirayamaJ., TakenakaM., YamaokaS., SuyamaY., FukuzawaH., OhyamaK.. , Biochim.Biophys.Acta, 1997, vol. 1350 (pg. 262-266)CrossrefSearchADSPubMed 57BörnerG.V., MörlM., JankeA., PääboS.. , EMBOJ., 1996, vol. 15 (pg. 5949-5957)PubMed 58LonerganK.M., GrayM.W.. , Science, 1993, vol. 259 (pg. 812-816)CrossrefSearchADSPubMed 59LonerganK.M., GrayM.W.. , NucleicAcidsRes., 1993, vol. 21 pg. 4402 CrossrefSearchADSPubMed 60GrayM.W., LonerganK.M.. BrennickeA., KückU.. , PlantMitochondria:WithEmphasisonRNAEditingandCytoplasmicMaleSterility, 1993Weinheim,GermanyVCH(pg. 15-22)GoogleScholarGooglePreviewOpenURLPlaceholderTextWorldCatCOPAC 61BurgerG., PlanteI., LonerganK.M., GrayM.W.. , J.Mol.Biol., 1995, vol. 245 (pg. 522-537)CrossrefSearchADSPubMed 62PriceD.H., GrayM.W.. GrosjeanH., BenneR.. , ModificationandEditingofRNA:TheAlterationofRNAStructureandFunction, 1998Washington,DCAmericanSocietyforMicrobiology inpressGoogleScholarGooglePreviewOpenURLPlaceholderTextWorldCatCOPAC 63LaforestM.-J., RoewerI., LangB.F.. , NucleicAcidsRes., 1997, vol. 25 (pg. 626-632)CrossrefSearchADSPubMed 64SchnareM.N., GreenwoodS.J., GrayM.W.. , FEBSLett., 1995, vol. 362 (pg. 24-28)CrossrefSearchADSPubMed 65AndersonS., BankierA.T., BarrellB.G., deBruijnM.H.L., CoulsonA.R., DrouinJ., EperonI.C., NierlichD.P., RoeB.A., SangerF., SchreierP.H., SmithA.J.H., StadenR., YoungI.G.. SlonimskiP., BorstP., AttardiG.. , MitochondrialGenes, 1982ColdSpringHarbor,NYColdSpringHarborLaboratoryPress(pg. 5-43)GoogleScholarGooglePreviewOpenURLPlaceholderTextWorldCatCOPAC 66OkimotoR., WolstenholmeD.R.. , EMBOJ., 1990, vol. 9 (pg. 3405-3411)PubMed 67SteinbergS., CedergrenR.. , NatureStruct.Biol., 1994, vol. 1 (pg. 507-510)CrossrefSearchADS 68WolffG., BurgerG., LangB.F., KückU.. , NucleicAcidsRes., 1993, vol. 21 (pg. 719-726)CrossrefSearchADSPubMed 69TurmelM., CôtéV., OtisC., MercierJ.-P., GrayM.W., LonerganK., LemieuxC.. , Mol.Biol.Evol., 1995, vol. 12 (pg. 533-545)PubMed 70FontaineJ.M., RousvoalS., LeblancC., KloaregB., Loiseaux-deGoërS.. , J.Mol.Biol., 1995, vol. 251 (pg. 378-389)CrossrefSearchADSPubMed 71DevenishR.J., PapakonstantinouT., GalanisM., LawR.H., LinnaneA.W., NagleyP.. , AnnlsNYAcad.Sci., 1992, vol. 671 (pg. 403-414)CrossrefSearchADS 72PapakonstantinouT., LawR.H., NesbittW.S., NagleyP., DevenishR.J.. , Curr.Genet., 1996, vol. 30 (pg. 12-18)CrossrefSearchADSPubMed 73PapakonstantinouT., GalanisM., NagleyP., DevenishR.J.. , Biochim.Biophys.Acta, 1993, vol. 1144 (pg. 22-32)CrossrefSearchADSPubMed 74GrayM.W.. LevingsC.S., VasilI.K.. , TheMolecularBiologyofPlantMitochondria, 1995Dordrecht,TheNetherlandsKluwerAcademic(pg. 635-659)GoogleScholarGooglePreviewOpenURLPlaceholderTextWorldCatCOPAC 75GrayM.W., CedergrenR., AbelY., SankoffD.. , Proc.Natl.Acad.Sci.USA, 1989, vol. 86 (pg. 2267-2271)CrossrefSearchADS 76Denovan-WrightE.M., NedelcuA.M., LeeR.W.. , PlantMol.Biol., 1998, vol. 36 (pg. 285-295)CrossrefSearchADSPubMed 77BoerP.H., GrayM.W.. , Curr.Genet., 1991, vol. 19 (pg. 309-312)CrossrefSearchADSPubMed 78VahrenholzC., RiemanG., PratjeE., DujonB., MichaelisG.. , Curr.Genet., 1993, vol. 24 (pg. 241-247)CrossrefSearchADSPubMed 79KairoA., FairlambA.H., GobrightE., NeneV.. , EMBOJ., 1994, vol. 13 (pg. 898-905)PubMed 80AndersonS., BankierA.T., BarrellB.G., deBruijnM.H.L., CoulsonA.R., DrouinJ., EperonI.C., NierlichD.P., RoeB.A., SangerF., SchreierP.H., SmithA.J., StadenR., YoungI.G.. , Nature, 1981, vol. 290 (pg. 457-465)CrossrefSearchADSPubMed 81BeagleyC.T., OkimotoR., WolstenholmeD.R.. , Genetics, 1998 inpress82VaidyaA.B., ArasuP.. , Mol.Biochem.Parasitol., 1987, vol. 22 (pg. 249-257)CrossrefSearchADSPubMed 83HajdukS.L., HarrisM.E., PollardV.W.. , FASEBJ., 1993, vol. 7 (pg. 54-63)PubMed 84ReadL.K., WilsonK.D., MylerP.J., StuartK.. , NucleicAcidsRes., 1994, vol. 22 (pg. 1489-1495)CrossrefSearchADSPubMed 85TakemuraM., NozatoN., OdaK., KobayashiY., FukuzawaH., OhyamaK.. , Mol.Gen.Genet., 1995, vol. 247 (pg. 565-570)CrossrefSearchADSPubMed 86LonerganK.M., GrayM.W.. , J.Mol.Biol., 1996, vol. 257 (pg. 1019-1030)CrossrefSearchADSPubMed 87OgawaS., MatsuoK., AngataK., YanagisawaK., TanakaY.. , Curr.Genet., 1997, vol. 31 (pg. 80-88)CrossrefSearchADSPubMed 88PellizzariR., AnjardC., BissonR.. , Biochim.Biophys.Acta, 1997, vol. 1320 (pg. 1-7)CrossrefSearchADSPubMed 89CommissiononPlantGeneNomenclature, PlantMol.Biol.Rep., 1994, vol. 12 CPGNsuppl.(pg. S1-S109)90SeilhamerJ.J., OlsenG.J., CummingsD.J.. , J.Biol.Chem., 1984, vol. 259 (pg. 5167-5172)PubMed 91SchnareM.N., HeinonenT.Y.K., YoungP.G., GrayM.W.. , J.Biol.Chem., 1986, vol. 261 (pg. 5187-5193)PubMed 92LangB.F., AhneF., DistlerS., TrinklH., KaudewitzF., WolfK.. SchweyenR.J., WolfK., KaudewitzF.. , Mitochondria1983,Nucleo-MitochondrialInteractions, 1983Berlin,GermanyWalterdeGruyter(pg. 313-329)GoogleScholarGooglePreviewOpenURLPlaceholderTextWorldCatCOPAC 93Pont-KingdomG.A., OkadaN.A., MacfarlaneJ.L., BeagleyC.T., WolstenholmeD.R., Cavalier-SmithT., Clark-WalkerG.D.. , Nature, 1995, vol. 375 (pg. 109-111)CrossrefSearchADS 94WeberB., BörnerT., WeiheA.. , Curr.Genet., 1995, vol. 27 (pg. 488-490)CrossrefSearchADSPubMed 95BoerP.H., GrayM.W.. , EMBOJ., 1988, vol. 7 (pg. 3501-3508)PubMed 96BurgerG., WernerS.. , J.Mol.Biol., 1985, vol. 186 (pg. 231-242)CrossrefSearchADSPubMed 97MuramatsuT., NishikawaK., NemotoF., KuchinoY., NishimuraS., MiyazawaT., YokoyamaS.. , Nature, 1988, vol. 336 (pg. 179-181)CrossrefSearchADSPubMed 98PfitzingerH., WeilJ.H., PillayD.T.N., GuillemautP.. , PlantMol.Biol., 1990, vol. 14 (pg. 805-814)CrossrefSearchADSPubMed 99PiM., AngataK., IkemuraT., YanagisawaK., TanakaY.. , J.PlantRes., 1996, vol. 109 (pg. 1-6)CrossrefSearchADS 100BeagleyC.T., OkadaN.A., WolstenholmeD.R.. , Proc.Natl.Acad.Sci.USA, 1996, vol. 93 (pg. 5619-5623)CrossrefSearchADS Authornotes +Presentaddress:AustralianNationalGenomicInformationService(ANGIS),UniversityofSydney,Sydney,NewSouthWales2006,Australia©1998OxfordUniversityPress IssueSection: Articles Downloadallslides Comments 0Comments Comments(0) Addcomment Closecommentformmodal Iagreetothetermsandconditions. Youmustacceptthetermsandconditions. Addcomment Cancel Submitacomment Name Affiliations Commenttitle Comment Youhaveenteredaninvalidcode Submit Cancel Thankyouforsubmittingacommentonthisarticle.Yourcommentwillbereviewedandpublishedatthejournal'sdiscretion.Pleasecheckforfurthernotificationsbyemail. Advertisement 3,072 Views 285 Citations ViewMetrics × Emailalerts Articleactivityalert Advancearticlealerts Newissuealert Subjectalert ReceiveexclusiveoffersandupdatesfromOxfordAcademic Moreonthistopic Atrans-splicinggroupIintronandtRNA-hypereditinginthemitochondrialgenomeofthelycophyteIsoetesengelmannii SupercoiledmitochondrialDNAsfromplanttissueculturecells TheSERRATEproteinisinvolvedinalternativesplicinginArabidopsisthaliana Plantnonsense-mediatedmRNAdecayiscontrolledbydifferentautoregulatorycircuitsandcanbeinducedbyanEJC-likecomplex Relatedarticlesin WebofScience GoogleScholar RelatedarticlesinPubMed Establishmentofreference(housekeeping)genesviaquantitativereal-timePCRforinvestigationofthegenomicbasisofabioticstressresistanceinPsammochloavillosa(Poaceae). IdentificationandexpressionanalysisofcandidategenesrelatedtoseeddormancyandgerminationinthewheatGATAfamily. Toexcludeortoaccumulate?RevealingtheroleofthesodiumHKT1;5transporterinplantadaptiveresponsestovaryingsoilsalinity. Foliarmicrostructureandhistochemicalanalysisofthelavendertree(HeteropyxisnatalensisHarv.). Citingarticlesvia WebofScience(285) GoogleScholar Crossref Latest MostRead MostCited TheSARS-CoV-2RNApolymeraseisaviralRNAcappingenzyme ChromosomesegregationinArchaea:SegA– andSegB–DNAcomplexstructuresprovideinsightsintosegrosomeassembly dbAMP2.0:updatedresourceforantimicrobialpeptideswithanenhancedscanningmethodforgenomicandproteomicdata Single-moleculemitochondrialDNAsequencingshowsnoevidenceofCpGmethylationinhumancellsandtissues CRISPRroots:on-andoff-targetassessmentofRNA-seqdatainCRISPR–Cas9editedcells Advertisement Advertisement AboutNucleicAcidsResearch EditorialBoard Policies AuthorGuidelines Facebook Twitter LinkedIn AdvertisingandCorporateServices JournalsCareerNetwork OnlineISSN1362-4962PrintISSN0305-1048Copyright©2021OxfordUniversityPress AboutUs ContactUs Careers Help Access&Purchase Rights&Permissions OpenAccess PotentiallyOffensiveContent Connect JoinOurMailingList OUPblog Twitter Facebook YouTube Tumblr Resources Authors Librarians Societies Sponsors&Advertisers Press&Media Agents Explore ShopOUPAcademic OxfordDictionaries Epigeum OUPWorldwide UniversityofOxford OxfordUniversityPressisadepartmentoftheUniversityofOxford.ItfurtherstheUniversity'sobjectiveofexcellenceinresearch,scholarship,andeducationbypublishingworldwide Copyright©2021OxfordUniversityPress CookiePolicy PrivacyPolicy LegalNotice SiteMap Accessibility Close ThisFeatureIsAvailableToSubscribersOnly SignInorCreateanAccount Close ThisPDFisavailabletoSubscribersOnly ViewArticleAbstract&PurchaseOptions Forfullaccesstothispdf,signintoanexistingaccount,orpurchaseanannualsubscription. Close
延伸文章資訊
- 1Genome - Wikipedia
Eukaryotic genomes[edit]. See also: Eukaryotic chromosome fine structure. Eukaryotic genomes are ...
- 2High-resolution human genome structure by single-molecule ...
This report presents the analysis of structural variation in four human genomes using Optical Map...
- 3Emerging coronaviruses: Genome structure, replication, and ...
The genomic structure and phylogenetic tree of coronaviruses. A, The phylogenetic tree of represe...
- 4Genome structure and gene content in protist mitochondrial ...
This review surveys the 23 complete protist mtDNA sequences that have been determined to date, co...
- 5Genomic Structure - an overview | ScienceDirect Topics
Genome structure: The viral genome is a small double-stranded circular DNA of approximately 5.2 k...