跑步運動對不同腦區神經活化之比較

文章推薦指數: 80 %
投票人數:10人

... 區(扣帶皮質、梨狀皮質、中隔內核、海馬回及杏仁核)、基底核(殼/尾狀核、伏隔核心)、間腦(視丘、下視丘)、腦幹(黑質區、腹側被蓋區、上丘、側水管周灰質、中縫背核、 資料載入處理中... 跳到主要內容 臺灣博碩士論文加值系統 ::: 網站導覽| 首頁| 關於本站| 聯絡我們| 國圖首頁| 常見問題| 操作說明 English |FB專頁 |Mobile 免費會員 登入| 註冊 功能切換導覽列 (165.22.106.144)您好!臺灣時間:2022/05/2811:56 字體大小:       ::: 詳目顯示 recordfocus 第1筆/ 共1筆  /1頁 論文基本資料 摘要 外文摘要 目次 參考文獻 電子全文 紙本論文 QRCode 本論文永久網址: 複製永久網址Twitter研究生:劉玉雯研究生(外文):Yu-WenLiu論文名稱:跑步運動對不同腦區神經活化之比較論文名稱(外文):Comparisonoftherunningexercise-inducedneuralactivityindifferentbrainregions指導教授:郭余民指導教授(外文):Yu-MinKuo學位類別:碩士校院名稱:國立成功大學系所名稱:細胞生物與解剖學研究所學門:醫藥衛生學門學類:醫學學類論文種類:學術論文論文出版年:2016畢業學年度:104語文別:英文論文頁數:39中文關鍵詞:跑步機運動、神經活性、c-Fos、BDNF外文關鍵詞:treadmillexercise、neuronalacitvity、c-Fos、BDNF相關次數: 被引用:1點閱:183評分:下載:5書目收藏:0 研究背景:運動已知可提升大腦功能,如:改變神經活性和神經可塑性,這些改變被認為與腦源性神經滋養因子(BDNF)有關。

c-fos是一種即早基因,常被用來標識活性改變的神經細胞。

有研究指出運動會增加大腦中某些腦區的c-Fos蛋白表現量,尤其是海馬回。

然而,運動是否會影響整個腦,或是只有特定腦區,則並不清楚。

研究目的:瞭解那些腦區的神經活性會被跑步運動所影響。

實驗方法:八周大的C57BL/6J小鼠進行一次(急性)、或為期一個月(長期)的中強度跑步機運動,每次一小時。

一部分的急性運動小鼠在跑步後,立即斷頭取腦(以下簡稱E1h組),另一部分則在休息兩小時後,才斷頭取腦(以下簡稱E1hS2h組)。

急性運動控制組的小鼠,則沒有跑步,直接斷頭取腦(以下簡稱Ctrl組)。

長期運動的小鼠,在最後一次跑步後,部分會立即斷頭取腦(以下簡稱1M-E1h組),另一部分則在休息兩小時後,才斷頭取腦(以下簡稱1M-E1hS2h組)。

長期運動控制組的小鼠,則停掉最後一次跑步,與1M-E1h組同時斷頭取腦(以下簡稱1M-Ctrl組)。

腦組織固定後,切成25μm的切片,以組織免疫染色法對c-Fos蛋白進行染色,並在下列腦區進行計數:大腦皮質(運動皮質和體感皮質)、邊緣區(扣帶皮質、梨狀皮質、中隔內核、海馬回及杏仁核)、基底核(殼/尾狀核、伏隔核心)、間腦(視丘、下視丘)、腦幹(黑質區、腹側被蓋區、上丘、側水管周灰質、中縫背核、橋腦核)和小腦(前葉和後葉)。

另一組小鼠腦組織切成一級運動皮質、一級體感皮質、背側海馬回、腹側海馬回、杏仁核、殼/尾狀核、視丘和下視丘,以西方墨點法對BDNF蛋白的表現量進行測量。

結果:相較於Ctrl組,E1h組的c-Fos+細胞密度,在大腦皮質、海馬回及基底核區較高;而到了E1hS2h時,只剩海馬回內的一些區域仍然高於Ctrl組。

在長期運動小鼠,大腦皮質、邊緣區、基底核、間腦及腦幹的側水管周灰質的c-Fos+細胞密度在1M-E1h組高於1M-Ctrl組;到了1M-E1hS2h時,只有海馬回內的一些區域、梨狀皮質、殼/尾狀核、下視丘和側水管周灰質的c-Fos+細胞密度仍然高於1M-Ctrl組。

雖然,急性運動並不影響BDNF蛋白的表現量,但是,BDNF蛋白增加的量和c-Fos+細胞密度增加的量,呈顯著正相關。

結論:無論是急性運動或是長期運動,大腦皮質、海馬回、以及基底核的神經活性都會受到影響而增加;而間腦和腦幹則只會受到長期運動的影響。

急性運動所增加的c-Fos+細胞密度和所增加的BDNF表現量呈正相關。

因此,運動可作為一非藥物、保護大腦的策略,尤其是那些對運動有反應的腦區。

Background:Exercisebenefitsbrainfunctions,suchasincreasesneuronalactivityandsynapticplasticity,whichhasbeenlinkedtobrain-derivedneurotrophicfactor(BDNF).c-fos,animmediateearlygene,isfrequentlyusedasneuronactivationmarker.Exerciseincreasestheexpressionofc-Fosinsomebrainregions,suchashippocampus.However,itisunclearwhethertheeffectofexerciseonbrainisubiquitousorisaregion-specificphenomenon.Objective:Toidentifythebrainregionssensitivetorunning.Methods:C57BL/6Jmice,8-week-old,wereforcedtorunonatreadmillatmoderateintensity,onehoureachtime.Themicewereassignedtothesingle-bout(acute)oronemonth(long-term)exercisegroup.Themicewereeitherkilledimmediately(acute:E1h;long-term:1M-E1h)or2hafter(acute:E1hS2h;long-term:1M-E1hS2h)the1hrunning.Miceoftheacutecontrolgroup(Ctrl)werekilledwithoutrunning.Miceofthelong-termcontrolgroup(1M-Ctrl)omittedthelastrunandkilledatthesametimeasthe1M-E1hgroup.Thebrainswerecutat25μmandimmunostainedforc-Fos.Thenumberofc-Fos+cellswascountedinthefollowingbrainregions:cortex(motorcortex,somatosensorycortex),limbicarea(cingulate,piriformcortex,septalnucleus,hippocampus,amygdala),basalnuclei(caudate/putamen,accumbensnucleuscore),diencephalon(thalamus,hypothalamus),brainstem(substantianigra,ventraltegmentalarea,superiorcolliculus,lateralperiaqueductalgray,dorsalraphenucleus,pontinenucleus)andcerebellum(anteriorandposteriorlobes).Someofthebrainsweredissectintoprimarymotorcortex,primarysomatosensorycortex,dorsalandventralpartsofhippocampus,amygdala,caudate/putamen,thalamusandhypothalamustomeasurethelevelsofBDNF.Results:ComparedtotheCtrlgroup,thedensityofc-Fos+cellswasincreasedinthecortex,hippocampusandbasalnucleiofE1hgroup.IntheE1hS2hgroup,afewregionsofhippocampuswerestillhigherthanthoseoftheCtrlgroup.Inthelong-termexercisemice,thedensityofc-Fos+cellsofcortex,limbicarea,basalnuclei,diencephalonandlateralperiaqueductalgrayofbrainsteminthe1M-E1hgroupwerehigherthanthoseof1M-Ctrlgroup.Thedensityofc-Fos+cellsintheregionsofhippocampus,piriformcortex,caudate/putamen,hypothalamusandlateralperiaqueductalgrayremainedelevatedinthe1M-E1hS2hgroup.AlthoughthelevelsofBDNFwerenotaffectedbyacuteexercise,thechangedlevelsofBDNFwerepositivelycorrelatedwiththechangeddensityofc-Fos+cells.Conclusion:Bothinacuteandlong-termexercisesinfluenceneuronalactivityinthecortex,hippocampusandbasalnuclei,whileneuronalactivityinthediencephalonandbrainstemwereonlyinfluencedbylong-termexercise.Acuteexercise-inducedchangesintheBDNFlevelswerepositivelycorrelatedwithchangesinthedensityofc-Fos+cells.Physicalexercisemayserveasanon-pharmaceuticalmeanstoprotectbrain,especiallythoseregionsrespondingtoexercisetraining. 中文摘要IAbstractIII致謝VFigureContentsVIIITableContentsIXAbbreviationXI.Introduction11.Exercise12.Neuronalactivity13.Brain-derivedneurotrophicfactor(BDNF)2II.ObjectiveandSpecificAims4III.MaterialsandMethods51.Animals52.Treadmillrunningprocedure53.Brainpreparation64.Immunohistochemistry75.Cellcounting76.Immunoblotting87.Statisticalanalysis9IV.Results101.Effectofsingle-boutacuteexerciseonneuronalactivityindifferentbrainregions102.Effectofone-monthlong-termexerciseonneuronalactivityindifferentbrainregions103.Changesofdensityofc-Fos+cells114.Comparingthechangesofdensityofc-Fos+cellsbetweensingle-boutacuteexerciseandone-monthlong-termexercise125.Effectofsingle-boutacuteexerciseonBDNFexpression126.Correlationbetweendensityofc-Fos+cellsandBDNFlevels13V.Discussion14VI.Conclusion18VII.References19 FigureContentsFigure1.Stereotaxicunitofmousebrain.26Figure2.Theprocedureofassigningabrainregionandcalculatethedensityofc-Fos+cells.27Figure3.Expressionpatternsofc-Fos+cellsbefore(Ctrl),immediatelyafter(E1h)andtwohoursafter(E1hS2h)1-htreadmillrunning.28Figure4.Effectofsingle-boutacuteexerciseondensityofc-Fos+cellsindifferentbrainregionsofmice.31Figure5.Effectofone-monthlong-termexerciseondensityofc-Fos+cellsindifferentbrainregionsofmice.34Figure6.Changesofdensityofc-Fos+cellsindifferentbrainregionsofmice.35Figure7.Effectofsingle-boutacuteexerciseonBDNFexpressioninthe8selectedbrainregions.37Figure8.Correlationbetweendensityofc-Fos+cellsandBDNFlevels.38Table1.Changesofdensityofc-Fos+cellsindifferentbrainregionsofmicethathavebeenexperiencedasingle-boutacuteexerciseand1-Mlong-termexercise………….39 AdkinsDL,BoychukJ,RempleMS,KleimJA(2006)Motortraininginducesexperience-specificpatternsofplasticityacrossmotorcortexandspinalcord.JApplPhysiol101:1776-1782.BaskinDS,MehlerWR,HosobuchiY,RichardsonDE,AdamsJE,FlitterMA(1986)Autopsyanalysisofthesafety,efficacyandcartographyofelectricalstimulationofthecentralgrayinhumans.BrainRes371:231-236.BerchtoldNC,ChinnG,ChouM,KesslakJP,CotmanCW(2005)Exerciseprimesamolecularmemoryforbrain-derivedneurotrophicfactorproteininductionintherathippocampus.Neuroscience133:853-861.BolamJP,HanleyJJ,BoothPAC,BevanMD(2000)Synapticorganisationofthebasalganglia.JAnat196:527-542.BramhamCR,MessaoudiE(2005)BDNFfunctioninadultsynapticplasticity:thesynapticconsolidationhypothesis.ProgNeurobiol76:99-125.ClarkPJ,BhattacharyaTK,MillerDS,RhodesJS(2011)Inductionofc-Fos,Zif268,andArcfromacuteboutsofvoluntarywheelrunninginnewandpre-existingadultmousehippocampalgranuleneurons.Neuroscience184:16-27.CotmanCW,BerchtoldNC(2002)Exercise:abehavioralinterventiontoenhancebrainhealthandplasticity.TrendsNeurosci25:295-301.DongM,WuY,FanY,XuM,ZhangJ(2006)c-fosmodulatesbrain-derivedneurotrophicfactormRNAexpressioninmousehippocampalCA3anddentategyrusneurons.NeurosciLett400:177-180.DumanCH,SchlesingerL,RussellDS,DumanRS(2008)Voluntaryexerciseproducesantidepressantandanxiolyticbehavioraleffectsinmice.BrainRes1199:148-158.EdlingY,Ingelman-SundbergM,SimiA(2007)Glutamateactivatesc-fosinglialcellsviaanovelmechanisminvolvingtheglutamatereceptorsubtypemGlu5andthetranscriptionalrepressorDREAM.Glia55:328-340.GaiddonC,LoefflerJP,LarmetY(1996)Brain-derivedneurotrophicfactorstimulatesAP-1andcyclicAMP-responsiveelementdependenttranscriptionalactivityincentralnervoussystemneurons.JNeurochem66:2279-2286.GeorgeP,KeithB.J.F(1998)Themousebraininstereotaxiccoordinates.GulfProfessionalPublishing.GottmannK,MittmannT,LessmannV(2009)BDNFsignalingintheformation,maturationandplasticityofglutamatergicandGABAergicsynapses.ExpBrainRes199:203-234.GuzowskiJF,TimlinJA,RoysamB,McNaughtonBL,WorleyPF,BarnesCA(2005)Mappingbehaviorallyrelevantneuralcircuitswithimmediate-earlygeneexpression.CurrOpinNeurobiol15:599-606.HerreroMT,BarciaC,NavarroJM(2002)Functionalanatomyofthalamusandbasalganglia.ChildsNervSyst18:386-404.HolschneiderDP,YangJ,GuoY,MaarekJM(2007)Reorganizationoffunctionalbrainmapsafterexercisetraining:importanceofcerebellar-thalamic-corticalpathway.BrainRes1184:96-107.HornEM,KramerJM,WaldropTG(2000)Developmentofhypoxia-inducedFosexpressioninratcaudalhypothalamicneurons.Neuroscience99:711-720.IchiyamaRM,GilbertAB,WaldropTG,IwamotoGA(2002)Changesintheexerciseactivationofdiencephalicandbrainstemcardiorespiratoryareasaftertraining.BrainRes947:225-233.ImamuraL,HasegawaH,KurashinaK,HamanishiA,TabuchiA,TsudaM(2000)Repressionofactivity-dependentc-fosandbrain-derivedneurotrophicfactormRNAexpressionbypyrethroidinsecticidesaccompanyingadecreaseinCa(2+)influxintoneurons.JPharmacolExpTher295:1175-1182.IwamotoGA,WappelSM,FoxGM,BuetowKA,WaldropTG(1996)Identificationofdiencephalicandbrainstemcardiorespiratoryareasactivatedduringexercise.BrainRes726:109-122.JeeYS,KoIG,SungYH,LeeJW,KimYS,KimSE,KimBK,SeoJH,ShinMS,LeeHH,ChoHJ,KimCJ(2008)Effectsoftreadmillexerciseonmemoryandc-Fosexpressioninthehippocampusoftheratswithintracerebroventricularinjectionofstreptozotocin.NeurosciLett443:188-192.JohnP.P,CedricX.B,FabioC(2015)Exercisephysiology.F.A.Daviscompany.JooJY,SchaukowitchK,FarbiakL,KilaruG,KimTK(2016)Stimulus-specificcombinatorialfunctionalityofneuronalc-fosenhancers.NatNeurosci19:75-83.KramerJM,PloweyED,BeattyJA,LittleHR,WaldropTG(2000)Hypothalamus,hypertension,andexercise.BrainResBull53:77-85.KuzniewskaB,RejmakE,MalikAR,JaworskiJ,KaczmarekL,KalitaK(2013)Brain-derivedneurotrophicfactorinducesmatrixmetalloproteinase9expressioninneuronsviatheserumresponsefactor/c-Fospathway.MolCellBiol33:2149-2162.LeeS,WilliamsonJ,LothmanEW,SzeleFG,ChesseletMF,VonHagenS,SapolskyRM,MattsonMP,ChristakosS(1997)EarlyinductionofmRNAforcalbindin-D28kandBDNFbutnotNT-3inrathippocampusafterkainicacidtreatment.BrainResMolBrainRes47:183-194.LeeTH,JangMH,ShinMC,LimBV,KimYP,KimH,ChoiHH,LeeKS,KimEH,KimCJ(2003)Dependenceofrathippocampalc-Fosexpressiononintensityanddurationofexercise.LifeSci72:1421-1436.LiJ,MitchellJH(2000)c-Fosexpressioninthemidbrainperiaqueductalgrayduringstaticmusclecontraction.AmJPhysiolHeartCircPhysiol279:H2986-H2993.MarsdenCD,ObesoJA(1994)ThefunctionsofthebasalgangliaandtheparadoxofstereotaxicsurgeryinParkinson'sdisease.Brain117:877-897.MayerDJ,WolfleTL,AkilH,CarderB,LiebeskindJC(1971)Analgesiafromelectricalstimulationinthebrainstemoftherat.Science174:1351-1354.MurrayPS,HolmesPV(2011)Anoverviewofbrain-derivedneurotrophicfactorandimplicationsforexcitotoxicvulnerabilityinthehippocampus.IntJPept2011:654085.NambuA(2004)Anewdynamicmodelofthecortico-basalganglialoop.ProgBrainRes143:461-466.NishijimaT,KawakamiM,KitaI(2013)Long-termexerciseisapotenttriggerforΔFosBinductioninthehippocampusalongthedorso-ventralaxis.PLoSOne8:e81245.NumakawaT,SuzukiS,KumamaruE,AdachiN,RichardsM,KunugiH(2010)BDNFfunctionandintracellularsignalinginneurons.HistolHistopathol25:237-258.NunezP,DiazB,PerillanC,VijandeM,ArguellesJ(2012)Progressivetrainingeffectsonneuronalhypothalamicactivationintherat.NeurosciLett517:113-117.OhiwaN,SaitoT,ChangH,NakamuraT,SoyaH(2006)Differentialresponsivenessofc-Fosexpressionintheratmedullaoblongatatodifferenttreadmillrunningspeeds.NeurosciRes54:124-132.ParkH,PooMM(2013)Neurotrophinregulationofneuralcircuitdevelopmentandfunction.NatRevNeurosci14:7-23.PerreyS(2013)Promotingmotorfunctionbyexercisingthebrain.BrainSci3:101-122.PorroCA,FrancescatoMP,CettoloV,DiamondME,BaraldiP,ZuianiC,BazzocchiM,diPramperoPE(1996)Primarymotorandsensorycortexactivationduringmotorperformanceandmotorimagery:afunctionalmagneticresonanceimagingstudy.JNeurosci16:7688-7698.RhodesJS,GarlandT.Jr,GammieSC(2003)Patternsofbrainactivityassociatedwithvariationinvoluntarywheel-runningbehavior.BehavNeurosci117:1243-1256.RosenfeldJP(1994)Interactingbrainstemcomponentsofopiate-activated,descending,pain-inhibitorysystems.NeurosciBiobehavRev18:403-409.SasakiK,GembaH(1984)Compensatorymotorfunctionofthesomatosensorycortexforthemotorcortextemporarilyimpairedbycoolinginthemonkey.ExpBrainRes55:60-68.SchoenfeldTJ,RadaP,PieruzziniPR,HsuehB,GouldE(2013)Physicalexercisepreventsstress-inducedactivationofgranuleneuronsandenhanceslocalinhibitorymechanismsinthedentategyrus.JNeurosci33:7770-7777.SmithY,BevanMD,ShinkE,BolamJP(1998)Microcircuitryofthedirectandindirectpathwaysofthebasalganglia.Neuroscience86:353-387.SnyderJS,RamchandP,RabbettS,RadikR,WojtowiczJM,CameronHA(2011)Septo-temporalgradientsofneurogenesisandactivityin13-month-oldrats.NeurobiolAging32:1149-1156.StröhleA(2009)Physicalactivity,exercise,depressionandanxietydisorders.JNeuralTransm116:777-784.VannSD,BrownMW,ErichsenJT,AggletonJP(2000)Fosimagingrevealsdifferentialpatternsofhippocampalandparahippocampalsubfieldactivationinratsinresponsetodifferentspatialmemorytests.JNeurosci20:2711-2718.VossMW,VivarC,KramerAF,vanPraagH(2013)Bridginganimalandhumanmodelsofexercise-inducedbrainplasticity.TrendsCognSci17:525-544.WilliamsCA,HoltsclawLI,ChivertonJA(1992)Releaseofimmunoreactiveenkephalinergicsubstancesintheperiaqueductalgreyofthecatduringfatiguingisometriccontractions.NeurosciLett139:19-23.WrannCD,WhiteJP,SalogiannnisJ,Laznik-BogoslavskiD,WuJ,MaD,LinJD,GreenbergME,SpiegelmanBM(2013)ExerciseinduceshippocampalBDNFthroughaPGC-1α/FNDC5pathway.CellMetab18:649-659.WuCW,ChangYT,YuL,ChenHI,JenCJ,WuSY,LoCP,KuoYM(2008)Exerciseenhancestheproliferationofneuralstemcellsandneuritegrowthandsurvivalofneuronalprogenitorcellsindentategyrusofmiddle-agedmice.JApplPhysiol105:1585-1594.WuSY,WangTF,YuL,JenCJ,ChuangJI,WuFS,WuCW,KuoYM(2011)Runningexerciseprotectsthesubstantianigradopaminergicneuronsagainstinflammation-induceddegenerationviatheactivationofBDNFsignalingpathway.BrainBehavImmun25:135-146.  電子全文  國圖紙本論文 推文 網路書籤 推薦 評分 引用網址 轉寄                                                                                                                                                                                                                    top 相關論文 相關期刊 熱門點閱論文 1. 跑步機運動訓練透過活化BDNF-TrkB下游訊息分子PLCγ和PKC來促進大白鼠海馬齒狀回的長期增益現象 2. BDNF-TrkB訊息路徑在跑步機運動訓練對大白鼠杏仁體側核長期增益現象之增強作用中所扮演的角色   無相關期刊   1. 探討青少年規律跑步運動與平衡力之關聯分析 2. 老化與跑步運動透過不同的機制影響海馬迴神經新生 3. 鞋重對跑步的運動生物力學與關節間協調之影響 4. 不同跑步以及快走速度之下對於下肢生物力學以及髖關節壓力分佈的影響 5. 大跑步計畫對國小高年級學童健康體適能之影響 6. 跑步機運動保護阿茲海默氏症基因轉殖小鼠之海馬迴及杏仁體避免神經退化 7. 跑步運動誘發之腦源性神經滋養因子與神經活化的關連 8. 鐵人三項選手不同跑步速度對身體前傾角度、下肢觸地角度及觸地時間之研究 9. 馬拉松參賽者下肢跑步傷害之調查 10. BDNF-TrkB訊息抑制微小膠細胞活化:在老化及運動中的結抗效果 11. 19世紀英格蘭公學校跑步運動的發展 12. 高血壓在3xTg小鼠及豬隻動物上增加濤蛋白磷酸化與乙型類澱粉蛋白的產生 13. 跑步機運動對於小鼠老化過程中海馬迴神經可塑性之影響 14. 黑質腦區及腹側被蓋腦區中微小膠細胞活化程度和多巴胺神經元數目之比較 15. 臺北市國小學生對跑步態度及健康體適能之研究—教育局95學年度推動各級學校跑步運動計畫為例     簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室



請為這篇文章評分?