Mod 7 - NRICH - Millennium Mathematics Project
文章推薦指數: 80 %
Pierce Geoghegan and Etienne Chan solved this problem using modulus arithmetic. This is Pierce's solution: Initially we use the fact that 3 n (mod 7) = 3 x ... Skipovernavigation NRICH Mainmenu Search accessibility contact Skipovernavigation Termsandconditions Home nrich Students primary age5-11 primarystudents secondary age11-18 secondarystudents Post16 age16+ post16 Teachers earlyyears age0-5 Earlyyears primary age5-11 Primaryteachers secondary age11+ Secondaryteachers Morelinks Topics Events NrichEvents Donate DonatetoNRICH HideMenuYoumayalsolike Purr-fection Whatisthesmallestperfectsquarethatendswiththefourdigits 9009? OldNuts Inturn4peoplethrowawaythreenutsfromapileandhidea quarteroftheremainderfinallyleavingamultipleof4nuts.How manynutswereatthestart? PrimeAP WhatcanyousayaboutthecommondifferenceofanAPwhereeverytermisprime?Mod7Age16to18ChallengeLevel Whatistheremainderwhen32001isdividedby 7? ZiHengLimandHagarElBishlawifoundapatternwhenthey raised3toapower,divideditbysevenandfoundthe remainder. 31=3 32=9 33=27 34=81 35=243 36=729 --PatternFound-- 3/7=0R3 9/7=1R2 27/7=3R6 81/7=11R4 243/7=34R5 729/7=104R1 37=2187 38=6561 39=19683 310=59049 311=177147 312=531441 2187/7=312R3 6561/7=937R2 19683/7=2811R6 59049/7=8435R4 177147/7=25306R5 531441/7=75920R1 Whenyoudividetheexponent2001bythenumber6,theanswer willbe333R3.Thethirdnumberintheremainderpatternis6, therefore32001dividedby7hasaremainderof6, assumingthatthepatternkeepsrepeatingitselfeverysix powers. Canyouprovethatthispatternwillkeeprepeatingitself? PierceGeogheganandEtienneChansolvedthisproblemusing modulusarithmetic.ThisisPierce'ssolution: Initiallyweusethefactthat3n(mod7)= 3x[3n-1(mod7)] so 31=3(mod7)=3 32=3x3(mod7)=2 33=3x2(mod7)=6 34=3x6(mod7)=4 35=3x4(mod7)=5 36=3x5(mod7)=1 Nowwehave36=1mod7anditfollowsthat3 1998=(36)333=1 333(mod7)=1 But32001=31998x33=1x 33(mod7)=6 thereforetheremainderis6when32001isdividedby 7. twitter facebook About Contactus Meettheteam Supportus Ourfunders Techhelp TheNRICHProjectaimstoenrichthemathematicalexperiencesofalllearners.Tosupportthisaim,membersofthe NRICHteamworkinawiderangeofcapacities,includingprovidingprofessionaldevelopmentforteacherswishingto embedrichmathematicaltasksintoeverydayclassroompractice. Registerforourmailinglist
延伸文章資訊
- 1電影199 - 中華電信MOD
- 2Day 14:[離散數學]同餘(Mod)是什麼? - iT 邦幫忙
Mod的存在的最重要意義,其實是幫—— 數據做分類. 比如說,如果把所有 自然數 都除以7,你可以想像只會有7種可能. 要麼被7整除N ≡ 0 (mod 7); 要麼被7除,餘1 N ≡ 1 ...
- 3模算數- 维基百科,自由的百科全书
模算數(英語:Modular arithmetic)是一個整数的算术系統,其中數字超過一定值後(稱為模)後 ... 用一般的算術加法,會得到7 + 8 = 15,但在十二小時制中,超過十二小時會...
- 4mk13 mod7 - 人氣推薦- 2022年6月| 露天拍賣
買mk13 mod7立即上露天享超低折扣優惠和運費補助,新註冊會員天天享優惠,快來露天參加各種 ... 海外 2ct. vtg咖啡杯- 收藏品mg 美國海軍mk mk 26/gmls mk 13...
- 5中華電信MOD 網站:節目表