台灣人工智慧學校(台北)第二期技術領袖培訓班資格考試考古題
文章推薦指數: 80 %
台灣人工智慧學校(台北)第二期技術領袖培訓班資格考試考古題. gist僅為備份檔案,rendered題目請見hackmd. 參考解答會在選項前以星號(*)標記,不過目前並不保證一定 ...
Skiptocontent
Allgists
BacktoGitHub
Signin
Signup
Sign in
Sign up
{{message}}
Instantlysharecode,notes,andsnippets.
mattwang44/台灣人工智慧學校(台北)第二期技術領袖培訓班資格考試考古題.md
LastactiveAug5,2018
Star
0
Fork
0
Star
Code
Revisions
5
Embed
Whatwouldyouliketodo?
Embed
Embedthisgistinyourwebsite.
Share
Copysharablelinkforthisgist.
Clonevia
HTTPS
ClonewithGitorcheckoutwithSVNusingtherepository’swebaddress.
LearnmoreaboutcloneURLs
DownloadZIP
Raw
台灣人工智慧學校(台北)第二期技術領袖培訓班資格考試考古題.md
台灣人工智慧學校(台北)第二期技術領袖培訓班資格考試考古題
gist僅為備份檔案,rendered題目請見hackmd
參考解答會在選項前以星號(*)標記,不過目前並不保證一定正確,各位高手可以自行編輯(需登入)提供各題詳解。
感謝提供題目的Anio俊傑和一同討論解題的各位:Sean,MoonyHsieh,johnson,怡中,JackyChang
Calculus
$f(w,b)=e^{-(2w+b)}$,find$\dfrac{\partialf(w,b)}{\partialw}$at$w=1$,$b=-2$
($A$)$2$($B$)$1$($C$)$e^{-2}$*($D$)$-2$($E$)$-e^{-1}$
$\dfrac{\partialf(w,b)}{\partialw}=e^{(-2w-b)}(-2)$
$\dfrac{\partialf(1,-2)}{\partialw}=e^{0}(-2)=-2$
Estimatetheextremevalues(localminimumandlocalmaximum)respectively,ofthefunction$f(x)=-2x^3-3x^2+12x$
*($A$)$-20,7$($B$)$0,7$($C$)$-5,20$($D$)$-4,-223$($E$)$-13,5$
$f'(x)=-6x^2-6x+12=-6(x+2)(x-1)$
extremevaluesoccurat$x=-2$or$1$
$f(-2)=-20$,$f(1)=7$
If$f(y)=2y$,where$y(x)=x^3+3x$,find$\dfrac{df}{dx}$at$x=5$.
($A$)$78$($B$)$2$($C$)$0$($D$)$280$*($E$)Noneofabove
$\dfrac{\partialf}{\partialx}=\dfrac{\partial}{\partialx}(2x^3+6x)=6x^2+6$
$\dfrac{\partialf(5)}{\partialx}=156$
Suppose$0\leqx\leq1$.Find$x$suchthat$f(x)=-x\log_2x-(1-x)\log_2(1-x)$ismaximized.
($A$)$0$*($B$)$0.5$($C$)$1$($D$)$0.25$($E$)$0.75$
$f'(x)=-\logx-1+\log(1-x)+1=\log(1-x)-\logx$
maximaoccursat$f'(x)=0$,thus$x=0.5$
Afunction$f(x,y)=ax^2+2bxy+cy^2$isbuiltwithrealnumbers$a$,$b$,and$c$.Inwhichconditionsitwillbeguranteedtohaveasaddlepointat$(x,y)=(0,0)$?
($A$)$a>0,ac>b^2$($B$)$a<0,ac>b^2$*($C$)$ac0$($E$)Noneofabove
$f(x,y)=ax^2+2bxy+cy^2$
$f_{xx}=2a$,$f_{xy}=f_{yx}=2b$,$f_{yy}=2c$
Hessian$H(x,y)=\begin{bmatrix}
2a&2b\
2b&2c\
\end{bmatrix}$
criteriaforsaddlepoint:$det(H(x,y))<0$
$ac-b^2<0$
LinearAlgebra
Forthematrices$X=\begin{bmatrix}
1&0&-2\
3&-2&-1\
\end{bmatrix}$and$W=\begin{bmatrix}
1&2\
9&0\
1&2\
\end{bmatrix}$,findtheproduct$(XW)$.
($A$)$\begin{bmatrix}
1&-2\
18&6\
\end{bmatrix}$
*($B$)$\begin{bmatrix}
-1&-16\
-2&4\
\end{bmatrix}$
($C$)$\begin{bmatrix}
7&9&7\
-4&0&-4\
-4&-18&-4\
\end{bmatrix}$
($D$)$\begin{bmatrix}
7&-4&-4\
9&0&-18\
7&-4&-4\
\end{bmatrix}$
($E$)Noneofabove
$(XW)^T=W^TX^T=\begin{bmatrix}
-1&-16\
-2&4\
\end{bmatrix}$
Aneigenvalueofmatrix$A$isascalar$\lambda$suchthat$det(\lambdaI-A)=0$.Findtheeigenvaluesforthematrix$A=\begin{bmatrix}
1&2&1\
6&-1&0\
-1&-2&-1\
\end{bmatrix}$
($A$)$\lambda=-3,0,2$
($B$)$\lambda=3,1,4$
($C$)$\lambda=-2,0,1$
*($D$)$\lambda=3,0,-4$
($E$)$\lambda=-4,-1,2$
$det(A-\lambdaI)=-\lambda^3-\lambda^2+12\lambda=\lambda(\lambda-3)(\lambda+4)$
$\lambda=0,3,-4$
For$AX=B$,where$A=\begin{bmatrix}
1&2\
2&-1\
\end{bmatrix}$and$B=\begin{bmatrix}
-1&1\
-12&7\
\end{bmatrix}$,find$X^{-1}$.
*($A$)$\begin{bmatrix}
1&3\
2&5\
\end{bmatrix}$($B$)$\begin{bmatrix}
-25&15\
10&-5\
\end{bmatrix}$($C$)$\begin{bmatrix}
-1&-2\
-2&1\
\end{bmatrix}$($D$)$\begin{bmatrix}
-5&-3\
-2&-1\
\end{bmatrix}$($E$)$\begin{bmatrix}
7&-1\
12&1\
\end{bmatrix}$
$X^{-1}=B^{-1}A=\begin{bmatrix}
1&3\
2&5\
\end{bmatrix}$
Giventwovectors$\vec{u}=(1,0,-2)$and$\vec{v}=(2,1.5,1)$,findthe$L^2$norm(Euclideandistance)$\vec{v}-\vec{u}$andtheanglebetweenthem.
($A$)distance=$1$,angle=$30^{\circ}$
($B$)distance=$1.5$,angle=$60^{\circ}$
($C$)distance=$2$,angle=$75^{\circ}$
($D$)distance=$2.5$,angle=$45^{\circ}$
*($E$)distance=$3.5$,angle=$90^{\circ}$
$d=\sqrt{(2-1)^2+(1.5-0)^2+(1-(-2))^2}=3.5$
$\theta=\cos^{-1}(\dfrac{u\cdotv}{\vertu\vert\vertv\vert})=\cos^{-1}(0)=\dfrac{\pi}{2}$
Forwhichvaluesof$a$aretherenosolutions,manysolutions,orauniquesolutiontothesystemgivenbelow?
$x+y=1$
$6x+6y=a$
($A$)$a=6$,$a\neq6$,none
($B$)$a\neq6$,none,$a=6$
*($C$)$a\neq6$,$a=6$,none
($D$)$a=6$,none,$a\neq6$
($E$)none,$a\neq6$,$a=6$
$x+y=a/6$
nosolution:$a/6\neq1$
infinitesolutions:$a/6=1$
nosolution:none
Statistics&Probability
Given$P(A)=0.25$,$P(B)=0.5$,$P(A\vertB)=0.1$,whatis$P(B\vertA)$?
($A$)$0.16$*($B$)$0.2$($C$)$0.55$($D$)$0.65$($E$)$0.74$
$0.1*0.5/0.25=0.2$
Assumethat$P(A)=0.4$and$P(B)=0.3$.If$A$and$B$aremutuallyexclusive,whatis$P(A$or$B)$?
*($A$)$0.7$($B$)$0.58$($C$)$0.88$($D$)$0.1$($E$)Noneofabove
$0.3+0.4=0.7$
Supposearandomexperimenthasthefollowingcharacteristics.
(1)Thereare$n$identicalandindependenttrialsofacommonprocedure.
(2)Thereareexactlytwopossibleoutcomesforeachtrial,onetermed"success"andtheother"failure."
(3)Theprobabilityofsuccessonanyonetrialisthesamenumber$q$.
Wealsosaythat$X$hasabinomialdistributionwithparameters$n$and$q$.Asweknow,$Var(X)=nq(1-q)$.Find$E(X^2)$.
Hint:$E(X^2)=E(X-\mu+\mu)^2=E(X-\mu)^2-2E[(X-\mu)\mu]+E(\mu^2)=...$
($A$)$nq^2+nq(n+1)$
*($B$)$nq+nq^2(n-1)$
($C$)$nq-nq^2(n-1)$
($D$)$nq+nq^2(n-1)$
($E$)$nq^2-nq(n-1)$
Supposeyou'reonagameshow,andyou'regiventhechoiceofthreedoors:Behindonedoorisacar;behindtheothers,goats.Youpickadoor,sayNo.1,andthehost,whoknowswhat'sbehindthedoors,opensanotherdoor,sayNo.3,whichhasagoat.Hethensaystoyou,"DoyouwanttopickdoorNo.2?"Isittoyouradvantagetoswitchyourchoice?
*($A$)Yes($B$)No($C$)Switchingornotwillnotchangethewinningprobability.
PleaseseetheintroductionofMontyHallproblemorthisChinesepostwithillustrativeexample.
Whichofthefollowingstatementsaretrue?
I.Allvariablescanbeclassifiedasquantitativeorcategoricalvariables.
II.Categoricalvariablescanbecontinuousvariables.
III.Quantitativevariablescanbediscretevariables.
($A$)Ionly($B$)IIonly($C$)IIIonly($D$)IandII*($E$)IandIII
Accordingtothechart,whichofthefollowingstatementsaretrue?
16.Thedotplotbelowshowsthenumberoftelevisionsownedbyeachfamilyonacityblock.
*($A$)Thedistributionisright-skewedwithnooutlier.
($B$)Thedistributionisright-skewedwithmanyoutliers.
($C$)Thedistributionisleft-skewedwithnooutliers.
($D$)Thedistributionisleft-skewedwithmanyoutliers.
($E$)Thedistributionissymmetric.
Anationalachievementtestisadministeredannuallyto3rdgraders.Thetesthasameanscoreof80andastandarddeviationof15.IfJane'sz-scoreis$-1.20$,whatwasherscoreonthetest?
*($A$)62($B$)68($C$)85($D$)92($E$)98
$z=\dfrac{x-\mu}{\sigma}$,$-1.2=\dfrac{x-80}{15}$
$x=62$
Whenwearefittingtheregressionmodel,weusuallyusesumofthesquarederrortoevaluateourregressionmodel.Thisnumbermeasuresthegoodnessoffitofthelinetothedata.Inthiscase,aregressionmodelhasalowersumofthesquarederrorandit'sbettermodelforourdataset.
Data1
Data2
Data3
Data4
Data5
x
2
2
6
8
0
y
0
1
2
3
3
Whichofthemodelsshownbelowisthebestone,havingaminimalsquarederror?
($A$)$\hat{y}=0.35x-0.125$
($B$)$\hat{y}=-0.35x+0.125$
($C$)$\hat{y}=0.65x-0.45$
($D$)$\hat{y}=-0.6x-0.125$
*($E$)$\hat{y}=0.35x+0.55$
Squarederrorof5models:
10.383125,59.083125,17.8125,112.508125,8.1725
Whichofthefollowingstatementsaretrue?
I.Whenthesumoftheresidualsisgreaterthanzero,thedatasetisnonlinear.
II.Arandompatternofresidualssupportsalinearmodel.
III.Arandompatternofresidualssupportsanonlinearmodel.
($A$)Ionly*($B$)IIonly($C$)IIIonly($D$)IandII($E$)IandIII
Therandomvariable$Z$isnormallydistributed.Meanof$Z$is$430$,andthevalue$Z=300$isthe14thpercentileofthedistribution.Whichisthebestestimateofthestandarddeviationofthedistribution.
*($A$)125($B$)135($C$)145($D$)155($E$)165
Programming
Createacustomfunction,Derivative(),whichcancomputethefirstderivativeofagivenfunction$f(x)$withrespectto$x$viaCentralDifferenceMethod,definedas$\lim_{h\to0}\dfrac{f(x+\dfrac{h}{2})-f(x-\dfrac{h}{2})}{h}$.
NOTE:Supposetheonlyavailablefunctionisprint()andletusset$h=1.0e-1$.
#python參考程式碼
defderivative(f,x,h,order):
iforder==0:
returnf(x)
else:
return(derivative(f,x+h/2,h,order-1)-derivative(f,x-h/2,h,order-1))/h
ATaylorseriesofafunction$g(x)$around$x=a$isdefinedbythefollowingseriesexpansion,$\sum_{n=0}^\infty\dfrac{g^{(n)}(a)}{n!}(x-a)^n$,where$g^{(n)}$denotes$n^{\text{th}}$derivativeof$g(x)$.Now,given$g(x)=2^x+2x^7$,trytocreateacustomfunction,Taylor_Expansion(),tocompute$g(x=3)$byusingTaylorseries($a=0$)upto$7^{\text{th}}$orderin$n$.Youshouldfindthatwhiletheanswerdeviatesfromtheexactsolution$g(x=3)$obtainedfromadirectsubstitution,theerrorislessthan$3%$.
HINT:Youcantake$x=3,a=0$andkeepthesummationonlyupto$n=7$intheseiesformula.
NOTE:Theonlyavailablefunctionisprint()andthecustomfunctionyougotin$1.$isuseful.
defderivative(f,x,h,order):
iforder==0:
returnf(x)
else:
return(derivative(f,x+h/2,h,order-1)-derivative(f,x-h/2,h,order-1))/h
deffactorial(n):
if(n<=1):
return1
else:
returnfactorial(n-1)*n
defTaylor_Expansion(f,x,a,h,order):
ans=0
foriinrange(order+1):
ans+=derivative(f,a,h,i)*((x-a)**i)/factorial(i)
returnans
defg(x):
return2**x+2*x**7
h=0.1
x=3
a=0
order=7
A=g(x)
T=Taylor_Expansion(g,x,a,h,order)
print(A)#4382
print(T)#4424.5478396
Signupforfree
tojointhisconversationonGitHub.
Alreadyhaveanaccount?
Signintocomment
Youcan’tperformthatactionatthistime.
Yousignedinwithanothertaborwindow.Reloadtorefreshyoursession.
Yousignedoutinanothertaborwindow.Reloadtorefreshyoursession.
延伸文章資訊
- 1技術領袖培訓班簡介 - 台灣人工智慧學校
技術領袖培訓班簡介 ... 技術領袖培訓班期為台灣育成具有人工智慧技術思維與實戰經驗的技術領袖人才,讓產業欲以人工智慧進行產業升級時,不再為缺乏人才所束縛。 我們將以為 ...
- 2「ai技術領袖培訓班」懶人包資訊整理 (1) | 蘋果健康咬一口
ai技術領袖培訓班資訊懶人包(1),我們將以為期十六周,每周三天(三、五、六),朝九晚六的全日班形式,進行人工智慧技術人才的密集培訓。讓不同專業領域的學員都能 ...
- 3台灣人工智慧學校 - Facebook
台灣人工智慧學校技術領袖培訓班第一期╳╳╳ #課程大綱熱騰騰出爐囉╳╳╳ 很感謝大家這麼的關注台灣人工智慧學校我們已經將課程大綱上線囉!
- 4台北總校技術領袖培訓班第三期(經濟部AI 技術人才專班)
課程簡介. 技術領袖培訓班期為台灣育成具有人工智慧技術思維與實戰經驗的技術領袖人才,讓產業欲以人工智慧進行產業升級時,不再為缺乏人才所束縛。
- 5台灣人工智慧學校 - 泛長照543
台灣人工智慧學校台中分校技術領袖培訓班第一期招生簡章. 一、修業期限:. 本學期自107 年8 月18 日起,至12 月15 日止,共16 週。每週三、五、六上課,時間皆為早上九 ...