Genome structure and transcriptional regulation of human ...
文章推薦指數: 80 %
We described previously that the newly identified HCoV-NL63 virus has a typical coronavirus genome structure and gene order [6]. The nucleotide ... Skiptomaincontent Advertisement SearchallBMCarticles Search DownloadPDF Research OpenAccess Published:17November2004 GenomestructureandtranscriptionalregulationofhumancoronavirusNL63 KrzysztofPyrc1,MaartenFJebbink1,BenBerkhout1&LiavanderHoek1 VirologyJournal volume 1,Article number: 7(2004) Citethisarticle 21kAccesses 77Citations Metricsdetails AbstractBackgroundTwohumancoronavirusesareknownsincethe1960s:HCoV-229EandHCoV-OC43.SARS-CoVwasdiscoveredintheearlyspringof2003,followedbytheidentificationofHCoV-NL63,thefourthmemberofthecoronaviridaefamilythatinfectshumans.Inthisstudy,wedescribethegenomestructureandthetranscriptionstrategyofHCoV-NL63byexperimentalanalysisoftheviralsubgenomicmRNAs.ResultsThegenomeofHCoV-NL63hasthefollowinggeneorder:1a-1b-S-ORF3-E-M-N.TheGCcontentoftheHCoV-NL63genomeisextremelylow(34%)comparedtoothercoronaviruses,andwethereforeperformedadditionalanalysisofthenucleotidecomposition.Overall,theRNAgenomeisverylowinCandhighinU,andthisisalsoreflectedinthecodonusage.InspectionofthenucleotidecompositionalongthegenomeindicatesthattheC-countincreasessignificantlyinthelastone-thirdofthegenomeattheexpenseofUandG.Wedocumenttheproductionofsubgenomic(sg)mRNAscodingfortheS,ORF3,E,MandNproteins.WedidnotdetectanyadditionalsgmRNA.Furthermore,wesequencedthe5'endofallsgmRNAs,confirmingthepresenceofanidenticalleadersequenceineachsgmRNA.NorthernblotanalysisindicatedthattheexpressionlevelamongthesgmRNAsdifferssignificantly,withthesgmRNAencodingnucleocapsid(N)beingthemostabundant.ConclusionsThepresenteddatagiveinsightintotheviralevolutionandmutationalpatternsincoronaviralgenome.FurthermoreourdatashowthatHCoV-NL63employsthediscontinuousreplicationstrategywithgenerationofsubgenomicmRNAsduringthe(-)strandsynthesis.BecauseHCoV-NL63hasalowpathogenicityandisabletogroweasilyincellculture,thisviruscanbeapowerfultooltostudySARScoronaviruspathogenesis. BackgroundUntilrecentlyonlytwohumancoronaviruseswereknown–humancoronavirus(HCoV)229EandHCoV-OC43,representativesofthegroup1and2coronaviruses,respectively.Bothwereidentifiedin1960sandaregenerallyconsideredascommoncoldviruses.Anoutbreakofsevereacuterespiratorysyndrome(SARS)inthespringof2003ledtotherapididentificationofSARS-CoV[1,2],whichisconsideredtobeadistinctmemberofthegroup2coronaviruses[3]orthefirstmemberofgroup4coronaviruses[4,5].Weidentifiedearlierthisyearanotherhumanpathogenfromthisfamily:HCoV-NL63[6],avariantthatbelongstogroup1togetherwithHCoV-229EandPEDV.Theserecentfindingsmaybestriking,assincethe1960'snotasinglenewHCoVhadbeendescribed.ThegenomefeaturesofSARS-CoVanditstranscriptionstrategyhavebeendescribedindetail[1,5,7].Here,wepresentsuchananalysisforHCoV-NL63.HCoV-NL63isamemberofthecoronaviridaefamilythatclusterstogetherwitharteri-,toro-andronivirusesintheorderofthenidovirales.Coronavirusesareenvelopedviruseswithapositive,singlestrandedRNAgenomeofapproximately27to32kb.The5'two-thirdofacoronavirusgenomeencodesapolyproteinthatcontainsallenzymesnecessaryforRNAreplication.Theexpressionofthecompletepolyproteinrequiresa-1ribosomalframeshiftduringtranslationthatistriggeredbyapseudoknotRNAstructure[8,9].Thepolyproteinundergoesautocatalyticcleavagebytheviralpapain-likeproteinaseandachymotrypsin-likeproteinase.The3'one-thirdofacoronavirusgenomeencodesseveralstructuralproteinssuchasspike(S),envelope(E),membrane(M)andnucleocapsid(N)that,amongotherfunctions,participateinthebuddingprocessandthatareincorporatedintothevirusparticle.Someofthegroup2virusesencodeahemagglutininesterase(HE)[10,11].Non-structuralproteingenesarelocatedbetweenthestructuralgenes.Theseaccessorygenesvarysignificantlyinnumberandsequenceamongcoronavirusspecies.Theirprecisefunctionisunknown,butseveralreportsindicatethattheycanmodulateviralpathogenicity[12].Coronavirusreplicationisacomplex,notyetfullyunderstoodmechanism[13,14].The5'endofthegenomicRNAcontainstheuntranslatedleader(L)sequencewiththeTranscriptionRegulationSequence(TRS)inthedownstreampart.TheLTRSisverysimilartosequencesthatcanbefoundinfrontofeachopenreadingframe(bodyTRSs).TheRNA-dependentRNA-polymerasehasbeenproposedtopauseafterabodyTRSofaparticulargeneiscopiedduring(-)strandsynthesis,subsequentlyswitchingtotheLTRSandthusaddingacommonLsequencetoeachsgmRNA[15].Thisdiscontinuoustranscriptionmechanismisbasedonbase-pairingofthenascent(-)strandcopyRNAwiththe(+)strandLTRS.Thenestedsetof(-)strandsgmRNAsaresubsequentlycopiedintoasetof(+)strandsgmRNA.OtherfactorsbesidesthesequencesimilaritybetweenbodyandLTRSinfluencetheefficiencyoftranscription.TheleveloftranscriptionofaparticulargenehasbeenreportedtobeinverselyrelatedtothedistanceofaparticularTRStothe3'endofthegenome[16–19].Inthisstudy,weanalyzedthegenomestructureofHCoV-NL63.First,wefocusontheunusualnucleotidecompositionoftheRNAgenome.Wedescribeindetailthebiasinthenucleotidecompositionanditsinfluenceonthecodonusageofthisvirus.Weprovideapossiblemechanisticexplanationforashiftinnucleotidebiasattwo-thirdoftheHCoV-NL63genomethatisbasedontheRNAreplicationmechanism.Second,wedescribeindetailthedifferentsgmRNAsgeneratedduringHCoV-NL63replicationandtheirrelativeabundance.ResultsNucleotidecontentoftheHCoV-NL63genomeWedescribedpreviouslythatthenewlyidentifiedHCoV-NL63virushasatypicalcoronavirusgenomestructureandgeneorder[6].Thenucleotidecompositionofthegenomic(+)strandRNAofseveralcoronaviridaemembersispresentedinFigure1,demonstratingacommonpatternwithUasthemostabundantnucleotideandGandinparticularCasunderrepresentednucleotides.HCoV-NL63hasthemostextremenucleotidebiasamongthecoronaviridae,with39%Uandonly14%C.Asageneraltrend,UandCseemtocompetedirectly,becausethegenomeswiththelowestC-count(HCoV-NL63,HCoV-OC43andBCoV)havethehighestU-countandviceversa(Figure1).Figure1NucleotidecontentofcoronaviridaeRNAgenomes.WearrangedthevirusesbasedontheirC-count,whichrangesfrom14%(HCoV-NL63)to20%(SARS-CoV).FullsizeimageToinvestigateifallcodingregionsofHCoV-NL63displayasimilarlystrongpreferenceforUandagainstC,wealsoplottedthenucleotidecountfortheindividualgenesand5'and3'non-codingregions(Figure2).Thetypicalnucleotidebiasisobservedinallgenomesegments.ThehighestU-countisfoundintheORF3andEgenes(43%)andthelowestC-countinthe1a/1bgenesandthe3'UTR(13%,14%and14%,respectively).TheNgeneismostmoderateinitsnucleotidebias,with21%Cand32%U,confirmingthe"competition"ideathatwasalreadysuggestedbyinspectionofFigure1.Figure2NucleotidecontentofindividualHCoV-NL63genesandthe5'/3'untranslatedregions(UTR).FullsizeimageWeplottedthenucleotidedistributionalongthegenome(Figure3)todeterminewhetherthereisanysignificantvariation.WeobservedthatlocalchangesinA-countareinverselylinkedtochangesinG-count.Thisismoststrikinginthe20400–26000ntregion,wherethreeApeaksaremirroredbythreeGanti-peaks.Althoughthetypicalbiasismaintainedalongthegenome,themostnotablevariationoccursinthelastone-thirdofthegenome,whereanincreaseinCandadecreaseinGcontentisapparent.Thisregionencodesthestructuralproteins.Figure3NucleotidedistributionalongtheHCoV-NL63genome.ThechangeintheC-andG-countattwo-thirdofthegenomeisstatisticallysignificantforalltestedcoronaviruses(HCoV-NL63,HCoV-229E,SARS-CoV,HCoV-OC43)withp<0.01forC-countandp<0.05forG-countinMann-WhitneyUtestfortwoindependentsamples.FullsizeimageRecently,GrigorievreportedaninterestingfeaturewithincoronaviralgenomesthatisvisiblewhenthecumulativeGC-skewisplotted[20,21].CumulativeGCskewgraphisawaytovisualizethelocalG:Cratioalongthegenome,discardingthelocalfluctuations.Abiphasicpatternwasdescribedthatseparatesthe1a/1bpolyproteingenesandthestructuralgenes.ThecumulativeGC-skewsforHCoV-NL63andfourothercoronaviruses:HCoV-OC43,HCoV-229E,PEDVandSARS-CoVarepresentedinFigure4.Inthe1a/1bgenes,theG:Cratioreacheshighlevels,whereasforallcoronaviruses,includingHCoV-NL63,the3'endofthegenomedisplaysaflatteningofthecurve,astheG:Cratioreachesvalue~1orless.Grigorievproposedthatthisbiphasicpatternisduetothediscontinuoustranscriptionprocess[20].Hesuggestedthatthefrequentdeaminationofcytosineonthe(-)strandRNAresultsinadecreaseofGonthe(+)strandintheregionencodingthestructuralgenes.Inthediscussionsectionwewillpresentanalternativemechanisticexplanation.Figure4CumulativeGC-skewdiagramsforseveralcoronaviralRNAgenomes.Theverticalbarindicatestheborderbetweenthe1a/1bandthestructuralgenes.FullsizeimageHCoV-NL63codonusageThebiasinthenucleotidecountledustocomparethecodonusageofHCoV-NL63withthatofhumanmRNA(Table1).ThecodonusageofHCoV-NL63differsmarkedlyfromthatofhumanmRNAs.Third-basechoicesinthefour-codonfamilies(Thr,Pro,Ala,Gly,Val)provideaconvenientexampleofthiscontrastingcodonusage.Forinstance,theGlycodonsinhumanmRNAspreferC(34%)overG(25%),A(25%)andU(16%).Incontrast,HCoV-NL63prefersU(83%)overA(7%),C(8%)andG(2%).Thisresultstronglysuggeststhatthecodonusageisshapeddirectlybytheunusualnucleotidecompositionoftheviralgenome,thatisahighU-countandalowG/C-count.AllHCoV-NL63genes,exceptfortheEgene,followthistrend(Table1).ThecoronaviraladdictiontotheUnucleotideismostprominentinthe"free"thirdpositionofdegeneratecodons.Forthecompletegenome,theU-countatthethirdpositionisupto58%whereastheA-countis20%,G-countis13%andC-countisonly9%(Figure5).ThisillustratesthattheU-pressuremainlyaffectsthe%Cand%G.Figure5Nucleotidecompositionofthefirst,secondandthirdcodonpositionsintheHCoV-NL63genome.FullsizeimageTable1CodonusageofHCoV-NL63comparedwiththatofhumangenesFullsizetableIdentificationoftheHCoV-NL63TRSelementsThe5'endofHCoV-NL63genomeRNAcontainstheLsequenceof72nucleotidesthatendswiththeLTRSelement.ThisTRShasahighsimilaritytoshortsequencesthatarelocatedinfrontofeachopenreadingframe(S-ORF3-E-M-N)[22].WepreviouslyidentifiedtheLTRSandbodyTRSoftheNgeneusingacDNAbank[6],whichallowedustopredictthebodyTRSoftheothergenes.Toconfirmthesepredictions,weamplifiedandsequencedallsgmRNAfragmentswithageneralLprimerandgene-specific3'primersinanRT-PCRprotocol.InspectionofsgmRNAjunctionsindicatedthattheyareindeedcomposedofthepartoftheHCoV-NL63genomethatisdirectlydownstreamofaparticularbodyTRS,withits5'endderivedfromtheleadersequence.Apparently,strandtransferoccurredonthe5'endofthebodyTRS,asindicatedinFigure6.ThemostconservedTRSregionwasdefinedbymultiplesequencealignmentasAACUAAA(graybox).ThiscoresequenceisconservedinallsgmRNA,exceptfortheEgenethatcontainsthesub-optimalTRScoreAACUAUA(Figure6).Interestingly,theEgenecontainsa13-nucleotidesequenceupstreamofthecoresequencewithperfecthomologytotheLsequence.PerhapstheupstreamsequencecompensatesfortheabsenceofanoptimalTRScoreduringdiscontinuous(-)strandsynthesis.Thiswouldsuggestthatthesesequencesarecopiedduring(-)strandsynthesis,andthattheactualstrandtransferwithintheEsequencesoccurredaftercopyingofthecoreTRSandthenext13nucleotides.Evidenceforsucha"delayed"strandtransferisprovidedbythejunctionanalysisoftheMandNsgmRNAs,whichclearlydemonstratesthatthenucleotidesdirectlyupstreamofthecoreTRSarederivedfromthebodyTRSelementandnotfromtheleader.Figure6Body-leaderjunctionsofallHCoV-NL63sgmRNAs.Shownontopistheleader(L)sequenceandbelowthespecificsequencesupstreamofthestructuralgenes.Thefusionof5'Lsequencesto3'sgRNAisindicatedbytheboxes.Sequencehomologybetweenthestrandsnearthejunctionismarkedbyasterisks,theconservedAACUAAATRScoreishighlightedingray.FullsizeimageAnalysisofthesubgenomicmRNAsofHCoV-NL63TodeterminewhetherthepredictedsgmRNAsencodingtheS-ORF3-E-M-Nproteinsareproducedinvirus-infectedcells,weperformedNorthernblotanalysisontotalcellularRNA(Figure7).Weuseda(-)strandNgeneprobethatannealstobothgenomicRNAandallsg(+)strandmRNAs.WeincludedRNAfromMHV-infectedcellstoobtaindiscretesizemarkers.SixdistinctmRNAsareproducedinHCoV-NL63infectedcells.ThesizesoftheRNAfragmentswereestimatedandthesevaluesnicelyfitthesizeofthegenomicRNAandthefivepredictedsgmRNAs.AllHCoV-NL63ORFsthathavethepotentialtoencodeviralproteinsareindeedtranscribedintosgmRNAs(Figure7).Figure7TheleftpanelshowstheNorthernblotanalysisofHCoV-NL63RNAininfectedLLC-MK2cells.RNAofHCoV-NL63(NL63lane)wascomparedwithRNAofMHVstrainA59(MHVlane).Non-infectedLLC-MK2cellsareincludedasanegativecontrol(controllane).MHVRNAbandsrepresentthecompletegenome(1)andsgmRNAs2a(2),S(3),17.8(4),13.1andE(5),M(6),N(7).HCoV-NL63RNAincludesthecompletegenome(1)andsgmRNAsforS(2),ORF3(3),E(4),M(5)andN(6).TherightpanelshowstheMHVandHCoV-NL63genomeorganizationandtheHCoV-NL63sg-mRNAs.FullsizeimageTodeterminetheexpressionlevelofeachsubgenomicRNA,wemeasuredtheintensityofthesignals.Whenplottedasafunctionofthegenomeposition(Figure8),thereappearsacorrelationbetweentherelativedistanceofagenetothe3'terminusanditsRNAexpressionlevel,withtheexceptionoftheEgene.Figure8ExpressionlevelsoftheHCoV-NL63genomicandsgmRNAs.FullsizeimageDiscussionWeanalyzedthenucleotidecompositionoftheHCoV-NL63genomic(+)RNA,whichwasfoundtoexhibitatypicalcoronaviruspatternwithanabundanceofU(39%)andshortageofG(20%)andC(14%).Infact,HCoV-NL63hasthemostpronouncednucleotidebiasamongthecoronaviridae.ThereisasignificantfluctuationinthenucleotidecountamongtheHCoV-NL63genes.Forinstance,ORF3andMappearasextremeU-richandA-poorislands.Itispossiblethattheuniquenucleotidecompositionofsomestructuralgenesreflectstheirevolutionaryorigin,perhapssuggestingthatsomeofthesefunctionswereacquiredrecentlyfromanotherviralorcellularoriginbygenetransfer.Thesepropertiesmimicthepathogenicityislandsofprokaryoticgenomes[23].Consistentwiththisgenetransferhypothesisistheobservationthatthereisalotofvariationinthenumberandidentityofthe3'genesamongcoronaviridae.Inspectionofthenucleotidecompositionalongthegenomeindicatesabi-phasicpattern.The5'two-thirdofthegenomeencodingthe1abpolyproteinhasastablenucleotidecountwiththetypicalU>A>G>Corder,butratherstrikingdifferencesareobservedinthe3'one-thirdofthegenomethatencodesthestructuralproteins(Figure2).Mostnotably,theC-countincreasessignificantlyattheexpenseofGandU.Grigorievrecentlyreportedthetypicalnucleotidebiasofcoronaviralgenomesandtheswitchinnucleotidecountattwo-thirdsofthegenome[20].HeperformedananalysisbasedoncumulativeGC-skew,andsuggestedthatthedropinGC-ratioisinfactduetoadecreaseinG-count.However,inspectionoftheHCoV-NL63nucleotidecompositionindicatesthattheswitchisduetoasuddenincreaseinC-count,withaslightdropinG-count.InspectionofothercoronaviralgenomesconfirmsthatCgoesup(withhighestsignificanceingroup1coronaviruses)andGgoesdown(withhighestsignificanceingroup2coronaviruses)attwo-thirdoftheviralgenome(resultsnotshown).Grigorievpresentedapossiblemechanisticexplanation.Hesuggestedthatthe3'-terminalone-thirdoftheviralgenomic(-)strandismorelikelytobesinglestrandedbecause(-)sgmRNAsynthesisonthe(+)strandtemplatefrequentlydisruptstheprotectiveduplexinthatregion.Thiswouldmakethispartofthe(-)strandgenomemorevulnerabletoCtoUtransitions,whichwouldeventuallyleadtoadecreaseoftheG-countonthe(+)strand.ThisscenarioexplainstheGdecrease,butobviouslyisnotconsistentwiththelocalincreaseinC-count.Wethereforeproposeanalternativemechanismthatisalsodictatedbytheviraltranscriptionstrategy.Thecentral1a/1bportionoftheviral(+)strandgenomeislesslikelytobeannealedtocomplementary(-)strandduringviralreplicationbecausemost(-)strandRNAsaresub-genomic,whichlackthis1a/1bdomain.The1a/1bportionofthegenomethusbecomesmorevulnerabletoCtoUdeamination,whichcorrelateswiththehighU-countandthelowC-count.Obviously,theremaybemanyothercellularconditionsandviralpropertieslikehigheramountofsecondarystructuresonthe3'partofthegenomethatcouldhaveshapedthecoronavirusgenomeoveranevolutionarytimescale,butthisscenarioexplainstheswitchinnucleotidecountattwo-thirdsoftheviralgenome.WeshowthatU-countsreachthehighestvaluesandC-countsthelowestvaluesatthethirdpositionoftheHCoV-NL63codons(Figure5).AnalysisofthesynonymouscodonusageindicatesthatcodonswithahighUandAcontentarepreferredoverCandGrichcodons(Table1).Thus,thepeculiargenomecompositionhasadirecteffectonthecodonusageofHCoV-NL63,andpossiblyevenanindirecteffectontheaminoacidcompositionofcoronaviralproteinsbyaffectingthenon-synonymouscodonusage[24–26].ThesynonymouscodonusageofHCoV-NL63clearlydiffersfromthatinhumancells.Thus,thegenomemayhavebeenshapedbycytosinedeaminationoveranevolutionarytimescale,butitispossiblethatthetranslationalmachineryhasrestrictedthisgenomedriftbecauseoftheavailabilityoftRNAmolecules.Inspectionoftheviralgenomesequenceledustopredictthatthe1abpolyproteinisexpressedfromthegenomicRNAandthe3'structuralproteinsandORF3from5distinctsgmRNAs.Thiswasconfirmedexperimentally.WeobservedthatsgmRNAsaremoreabundantwhenthecorrespondingTRSislocatedclosertothe3'endofthegenome.TheexceptionisformedbytheEsgmRNA,whichisrelativelyunderexpressed.Thismaycorrelatewiththelowexpressionlevelofthisprotein.Thegeneraltrendofincreasedgeneexpressionalongthegenomehasbeenreportedpreviouslyforothercoronaviruses[19].ApossiblemechanisticexplanationisthattheviralpolymerasedensityisreducedalongthegenomeorthatthepolymerasebecomeslesssusceptibletoexecuteatransferfrombodyTRStoLTRSduringextended(-)strandsynthesis.Fine-tuningoftheefficiencyofthestrand-transferprocessesmaybemodulatedbymanyotherfeatures,includingthelocalsequenceandstructureofthecorebodyTRSanditsflankingregions.Itwasreportedpreviously[27]thatthecoreoftheLTRSofgroup1coronavirusesispresentedinthesinglestrandedloopofamini-hairpin.WefoundsimilarmotifsinHCoV-NL63(resultsnotshown).Althoughnotexcessivelystable,thisstructuralmotifsispredictedtofoldaspartofthecompleteleadersequence,anditmayparticipateinthestrandtransferprocess.ThecoresequenceAACUAAAisconservedintheLTRSandallbodyTRSs,exceptfortheEgenethathasasinglemismatchAACUAUA.Thepresenceofasub-optimalcoresequencemayinfactexplainthelowerthanexpectedexpressionlevelofthissgmRNA(Figure8).ButthereisanotherstrikingfeatureoftheEbodyTRS:ithas13additionalupstreamnucleotidesincommonwiththeleaderTRS.Ifoneassumesthatstrandtransferdoesnotoccuratthecoresequencebutupto13nucleotidesfurtherupstream,thissequencehomologywillresultinadditionalbasepairinginteractionsthatmaystimulatethestrandtransferprocess.Thus,theextendedTRShomologymaycompensateforthesub-optimalcoreelement.Aremarkablysimilarscenarioofsub-optimalcoreandextendedTRSisapparentintheEgenesequenceofPEDV(resultsnotshown).AfurtherindicationthattheviralpolymerasefrequentlycopiesbeyondthecoresequenceisprovidedbytheactualsequenceoftheMandNsgmRNAs,whichapparentlyhavecopiedtheTRSnucleotidethatflanksonthe5'sidethecoreelementofbodyTRS.MethodsGenomeAnalysisThenucleotidecontentofdifferentCoronaviridaefamilymemberswasassessedusingBioEditsoftware.ThenucleotidedistributionwasdeterminedusingaMicrosoftExceldatasheet(300nucleotide(nt)windowand10-ntstep).CodonusagewasassessedusingDNA2.0software.DatawasprocessedinMicrosoftExceldatasheetandallstatisticalanalysiswasperformedwithSPSS11.5.0software.Thelevelofsignificanceofthenucleotidebiaswasestablishedfor300-ntnon-overlappingwindowswiththenon-parametricMann-WhitneyUtestfortwoindependentsamples.CumulativeGC-skewgraphsweregeneratedasdescribedpreviously[20]withthevalueinstepndefinedasthesumof(G-C)/(G+C)fromstep0ton(200-ntslidingwindow,10-ntstep).ViralRNAisolationHCoV-NL63RNAwasobtainedfromvirus-infectedLLC-MK2cells(2×107)after6daysofculture(viruspassage7).MouseHepatitisVirus(MHV)RNAwasobtainedbyinfecting2×107LR7cellswithMHVstrainA59.Themediumwasremovedandthecellsweredissolvedin15mlTRIzol®andRNAwasisolatedaccordingtothestandardTRIzol®procedure.RNAwassubsequentlyprecipitatedwith0.8volumeofisopropanol,driedanddissolvedin50μlH2O.IntegrityoftheRNAwasanalyzedbyelectrophoresisonanon-denaturating0.8%agarosegel.RNAwasstoredat-150°C.RT-PCRThecDNAusedforsequencingandprobeconstructionwasmadebyMMLV-RTonviralRNAwith1μgofrandomhexamerDNAprimersin10mMTrispH8.3,50mMKCl,0.1%Triton-X100,6mMofMgCl2and50μMofeachdNTPsat37°Cfor1hour.ThesinglestrandedcDNAproductwasmadeintodouble-strandedDNAinastandardPCRreactionwith1.25UofTaqpolymerase(Perkin-Elmer)perreactionwithappropriateprimers(seebelow).NorthernBlotGelelectrophoresisofviralRNAwasperformedona1%agarosegelwith7%offormaldehydeat100Voltin1×MOPSbuffer(40mMMOPS,10mMsodiumacetate,pH7.0).Transferontoapositivelychargednylonmembrane(BoehringerMannheim)wasdoneovernightbymeansofcapillaryforce.RNAwaslinkedtothemembraneinaUVcrosslinker(Stratagene).ForgenerationoftheHCoV-NL63probe,theRT-PCRproductwasfurtheramplifiedwith5'primerN5PCR1(CTGTTACTTTGGCTTTAAAGAACTTAGG)and3'primerN3PCR1(CTCACTATCAAAGAATAACGCAGCCTG).Similarly,theMHVprobewasamplifiedwith5'primerMHV_UTR-B5'(GATGAAGTAGATAATGTAAGCGT)and3'primerMHV_UTR-B3'(TGCCACAACCTTCTCTATCTGTTAT).LabelingoftheprobeswasdoneinastandardPCRreactionwithspecific3'primers(N3PCR1andMHV_UTR-B3')inpresenceof[α-32P]dCTP.PrehybridizationandhybridizationwasdoneinULTRAhybbuffer(Ambion)at50°Cfor1and12hours,respectively.Themembranewasthenwashedatroomtemperaturewithlow-stringencybuffer(2×SSC,0.2%SDS)andat50°Cinhighstringencybuffer(0.1×SSC,0.2%SDS).ImageswereobtainedusingtheSTORM860phosphorimager(AmershamBiosciences)anddataanalysiswasperformedwiththeImageQuantsoftwarepackage.ThesizeofsgmRNAfragmentsofHCoV-NL63wereestimatedfromtheirmigrationontheNorthernblotusingthesgmRNAofMHVassizemarker.SequenceanalysisofTRSmotifsTheL/bodyTRSjunctionswerePCR-amplifiedfromanHCoV-NL63cDNAbank.Weperformed35cyclePCRwiththe5'Lprimer(L5–TAAAGAATTTTTCTATCTATAGATAG)andgenespecific3'primers(Sgene–SL3'–ACTACGGTGATTACCAACATCAATATA;ORF3–4L3'–CAAGCAACACGACCTCTAGCAGTAAG;Egene–EL3'–TATTTGCATATAATCTTGGTAAGC;Mgene–ML3'–GACCCAGTCCACATTAAAATTGACA;Ngene–3-163-F15–ATTACCTAGGTACTGGACCT).ThePCRproductswereanalyzedbyelectrophoresisona0.8%agarosegelandproductsofdiscretesizewereusedforsequencingusingtheBigDyeterminatorkit(ABI)andABIPrism377sequencer(PerkinElmer).SequenceanalysiswasperformedbySequenceNavigatorandAutoAssembler2.1software.SequencesThecompletegenomesequenceofHCoV-NL63[6]isdepositedinGenBank(accessionnumber:NC_005831).sgmRNAsequencesaredepositedinGenBankundertheaccessionnumbers:AY697419-AY697423.TheGenBankaccessionnumberofthesequencesusedinthisgenomeanalysisare:MHV(mousehepatitisvirus,strainMHV-A59):NC_001846;HCoV-229E:NC_002645;HCoV-OC43strainATCCVR-759:NC_005147;PEDV(porcineepidemicdiarrheavirus,strainCV777):AF353511;TGEV(transmissiblegastroenteritisvirus,strainPurdue):NC_002306;SARS-CoVisolateTor2:NC_004718;IBV(avianinfectiousbronchitisvirus,strainBeaudette):NC_001451;BCoV(bovinecoronavirus,isolateBCoV-ENT):NC_003045. References1.DrostenC,GuntherS,PreiserW,vanderWerfS,BrodtHR,BeckerS,RabenauH,PanningM,KolesnikovaL,FouchierRA,BergerA,BurguiereAM,CinatlJ,EickmannM,EscriouN,GrywnaK,KrammeS,ManuguerraJC,MullerS,RickertsV,SturmerM,ViethS,KlenkHD,OsterhausAD,SchmitzH,DoerrHW:Identificationofanovelcoronavirusinpatientswithsevereacuterespiratorysyndrome.NEnglJMed2003,348:1967-1976.10.1056/NEJMoa030747CAS Article PubMed GoogleScholar 2.KuikenT,FouchierRA,SchuttenM,RimmelzwaanGF,vanAmerongenG,vanRielD,LamanJD,deJongT,vanDoornumG,LimW,LingAE,ChanPK,TamJS,ZambonMC,GopalR,DrostenC,vanderWerfS,EscriouN,ManuguerraJC,StohrK,PeirisJS,OsterhausAD:Newlydiscoveredcoronavirusastheprimarycauseofsevereacuterespiratorysyndrome.Lancet2003,362:263-270.10.1016/S0140-6736(03)13967-0CAS Article PubMed GoogleScholar 3.GibbsAJ,GibbsMJ,ArmstrongJS:ThephylogenyofSARScoronavirus.ArchVirol2004,149:621-624.10.1007/s00705-003-0244-0CAS Article PubMed GoogleScholar 4.SnijderEJ,BredenbeekPJ,DobbeJC,ThielV,ZiebuhrJ,PoonLL,GuanY,RozanovM,SpaanWJ,GorbalenyaAE:UniqueandconservedfeaturesofgenomeandproteomeofSARS-coronavirus,anearlysplit-offfromthecoronavirusgroup2lineage.JMolBiol2003,331:991-1004.10.1016/S0022-2836(03)00865-9CAS Article PubMed GoogleScholar 5.RotaPA,ObersteMS,MonroeSS,NixWA,CampagnoliR,IcenogleJP,PenarandaS,BankampB,MaherK,ChenMH,TongS,TaminA,LoweL,FraceM,DeRisiJL,ChenQ,WangD,ErdmanDD,PeretTC,BurnsC,KsiazekTG,RollinPE,SanchezA,LiffickS,HollowayB,LimorJ,McCaustlandK,Olsen-RasmussenM,FouchierR,GuntherS,OsterhausAD,DrostenC,PallanschMA,AndersonLJ,BelliniWJ:Characterizationofanovelcoronavirusassociatedwithsevereacuterespiratorysyndrome.Science2003,300:1394-1399.10.1126/science.1085952CAS Article PubMed GoogleScholar 6.vanderHoekL,PyrcK,JebbinkMF,Vermeulen-OostW,BerkhoutRJ,WolthersKC,Wertheim-vanDillenPM,KaandorpJ,SpaargarenJ,BerkhoutB:Identificationofanewhumancoronavirus.NatMed2004,10:368-373.10.1038/nm1024CAS Article PubMed GoogleScholar 7.KsiazekTG,ErdmanD,GoldsmithCS,ZakiSR,PeretT,EmeryS,TongS,UrbaniC,ComerJA,LimW,RollinPE,DowellSF,LingAE,HumphreyCD,ShiehWJ,GuarnerJ,PaddockCD,RotaP,FieldsB,DeRisiJ,YangJY,CoxN,HughesJM,LeDucJW,BelliniWJ,AndersonLJ:Anovelcoronavirusassociatedwithsevereacuterespiratorysyndrome.NEnglJMed2003,348:1953-1966.10.1056/NEJMoa030781CAS Article PubMed GoogleScholar 8.HeroldJ,SiddellSG:An'elaborated'pseudoknotisrequiredforhighfrequencyframeshiftingduringtranslationofHCV229EpolymerasemRNA.NucleicAcidsRes1993,21:5838-5842.PubMedCentral CAS Article PubMed GoogleScholar 9.GiedrocDP,TheimerCA,NixonPL:Structure,stabilityandfunctionofRNApseudoknotsinvolvedinstimulatingribosomalframeshifting.JMolBiol2000,298:167-185.10.1006/jmbi.2000.3668CAS Article PubMed GoogleScholar 10.GagnetenS,GoutO,Dubois-DalcqM,RottierP,RossenJ,HolmesKV:Interactionofmousehepatitisvirus(MHV)spikeglycoproteinwithreceptorglycoproteinMHVRisrequiredforinfectionwithanMHVstrainthatexpressesthehemagglutinin-esteraseglycoprotein.JVirol1995,69:889-895.PubMedCentral CAS PubMed GoogleScholar 11.ZhangX,HintonDR,ParkS,ParraB,LiaoCL,LaiMM,StohlmanSA:Expressionofhemagglutinin/esterasebyamousehepatitisviruscoronavirusdefective-interferingRNAaltersviralpathogenesis.Virology1998,242:170-183.10.1006/viro.1997.8993CAS Article PubMed GoogleScholar 12.deHaanCA,MastersPS,ShenX,WeissS,RottierPJ:Thegroup-specificmurinecoronavirusgenesarenotessential,buttheirdeletion,byreversegenetics,isattenuatinginthenaturalhost.Virology2002,296:177-189.10.1006/viro.2002.1412CAS Article PubMed GoogleScholar 13.SawickiSG,SawickiDL:Coronavirustranscription:subgenomicmousehepatitisvirusreplicativeintermediatesfunctioninRNAsynthesis.JVirol1990,64:1050-1056.PubMedCentral CAS PubMed GoogleScholar 14.SawickiSG,SawickiDL:Anewmodelforcoronavirustranscription.AdvExpMedBiol1998,440:215-219.CAS Article PubMed GoogleScholar 15.SpaanW,DeliusH,SkinnerM,ArmstrongJ,RottierP,SmeekensS,vanderZeijstBA,SiddellSG:CoronavirusmRNAsynthesisinvolvesfusionofnon-contiguoussequences.EMBOJ1983,2:1839-1844.PubMedCentral CAS PubMed GoogleScholar 16.HofmannMA,ChangRY,KuS,BrianDA:Leader-mRNAjunctionsequencesareuniqueforeachsubgenomicmRNAspeciesinthebovinecoronavirusandremainsothroughoutpersistentinfection.Virology1993,196:163-171.10.1006/viro.1993.1464CAS Article PubMed GoogleScholar 17.KoningsDA,BredenbeekPJ,NotenJF,HogewegP,SpaanWJ:Differentialprematureterminationoftranscriptionasaproposedmechanismfortheregulationofcoronavirusgeneexpression.NucleicAcidsRes1988,16:10849-10860.PubMedCentral CAS Article PubMed GoogleScholar 18.SethnaPB,HungSL,BrianDA:Coronavirussubgenomicminus-strandRNAsandthepotentialformRNAreplicons.ProcNatlAcadSciUSA1989,86:5626-5630.PubMedCentral CAS Article PubMed GoogleScholar 19.deHaanCA,vanGenneL,StoopJN,VoldersH,RottierPJ:Coronavirusesasvectors:positiondependenceofforeigngeneexpression.JVirol2003,77:11312-11323.10.1128/JVI.77.21.11312-11323.2003PubMedCentral CAS Article PubMed GoogleScholar 20.GrigorievA:MutationalpatternscorrelatewithgenomeorganizationinSARSandothercoronaviruses.TrendsGenet2004,20:131-135.10.1016/j.tig.2004.01.009CAS Article PubMed GoogleScholar 21.GrigorievA:Strand-specificcompositionalasymmetriesindouble-strandedDNAviruses.VirusRes1999,60:1-19.10.1016/S0168-1702(98)00139-7CAS Article PubMed GoogleScholar 22.HiscoxJA,MawdittKL,CavanaghD,BrittonP:InvestigationofthecontrolofcoronavirussubgenomicmRNAtranscriptionbyusingT7-generatednegative-senseRNAtranscripts.JVirol1995,69:6219-6227.PubMedCentral CAS PubMed GoogleScholar 23.HackerJ,KaperJB:Pathogenicityislandsandtheevolutionofmicrobes.AnnuRevMicrobiol2000,54:641-679.10.1146/annurev.micro.54.1.641CAS Article PubMed GoogleScholar 24.SueokaN:CorrelationbetweenBaseCompositionofDeoxyribonucleicAcidandAminoAcidCompositionofProtein.ProcNatlAcadSciUSA1961,47:1141-1149.PubMedCentral CAS Article PubMed GoogleScholar 25.BerkhoutB,vanHemertFJ:TheunusualnucleotidecontentoftheHIVRNAgenomeresultsinabiasedaminoacidcompositionofHIVproteins.NucleicAcidsRes1994,22:1705-1711.PubMedCentral CAS Article PubMed GoogleScholar 26.vanHemertFJ,BerkhoutB:ThetendencyoflentiviralopenreadingframestobecomeA-rich:constraintsimposedbyviralgenomeorganizationandcellulartRNAavailability.JMolEvol1995,41:132-140.CAS Article PubMed GoogleScholar 27.vandenBornE,GultyaevAP,SnijderEJ:Secondarystructureandfunctionofthe5'-proximalregionoftheequinearteritisvirusRNAgenome.RNA2004,10:424-437.10.1261/rna.5174804PubMedCentral CAS Article PubMed GoogleScholar 28.NakamuraY,GojoboriT,IkemuraT:CodonusagetabulatedfrominternationalDNAsequencedatabases:statusfortheyear2000.NucleicAcidsRes2000,28:292.10.1093/nar/28.1.292PubMedCentral CAS Article PubMed GoogleScholar DownloadreferencesAcknowledgementsWethankBerendJanBoschandPeterRottierforprovidingMHVinfectedcellsandAlexanderNabatovandBarbaravanSchaikfortechnicalsupport.AuthorinformationAffiliationsDepartmentofHumanRetrovirology,UniversityofAmsterdam,1105,Meibergdreef15,CollegeStation,AZ,NetherlandsKrzysztofPyrc, MaartenFJebbink, BenBerkhout & LiavanderHoekAuthorsKrzysztofPyrcViewauthorpublicationsYoucanalsosearchforthisauthorin PubMed GoogleScholarMaartenFJebbinkViewauthorpublicationsYoucanalsosearchforthisauthorin PubMed GoogleScholarBenBerkhoutViewauthorpublicationsYoucanalsosearchforthisauthorin PubMed GoogleScholarLiavanderHoekViewauthorpublicationsYoucanalsosearchforthisauthorin PubMed GoogleScholarCorrespondingauthorCorrespondenceto LiavanderHoek.AdditionalinformationCompetinginterestsTheauthorsdeclarethattheyhavenocompetinginterests.Authors'contributionsKPcarriedouttheviralRNAisolation,RT-PCR,sequencingofsgmRNAs,Northernblotevaluationandallcomputeranalysisdoneinthisstudy;MFJcarriedoutthefullgenomesequencing;allauthorsparticipatedinwritingthemanuscript.Lv/dHandBBaretheprincipalinvestigatorsAuthors’originalsubmittedfilesforimagesBelowarethelinkstotheauthors’originalsubmittedfilesforimages.Authors’originalfileforfigure1Authors’originalfileforfigure2Authors’originalfileforfigure3Authors’originalfileforfigure4Authors’originalfileforfigure5Authors’originalfileforfigure6Authors’originalfileforfigure7Authors’originalfileforfigure8RightsandpermissionsReprintsandPermissionsAboutthisarticleCitethisarticlePyrc,K.,Jebbink,M.F.,Berkhout,B.etal.GenomestructureandtranscriptionalregulationofhumancoronavirusNL63. VirolJ1,7(2004).https://doi.org/10.1186/1743-422X-1-7DownloadcitationReceived:29October2004Accepted:17November2004Published:17November2004DOI:https://doi.org/10.1186/1743-422X-1-7SharethisarticleAnyoneyousharethefollowinglinkwithwillbeabletoreadthiscontent:GetshareablelinkSorry,ashareablelinkisnotcurrentlyavailableforthisarticle.Copytoclipboard ProvidedbytheSpringerNatureSharedItcontent-sharinginitiative KeywordsCodonUsageSevereAcuteRespiratorySyndromePorcineEpidemicDiarrheaVirusSevereAcuteRespiratorySyndromeSynonymousCodonUsage DownloadPDF Advertisement VirologyJournal ISSN:1743-422X Contactus Submissionenquiries:AccesshereandclickContactUs Generalenquiries:[email protected]
延伸文章資訊
- 1Genome - Wikipedia
Eukaryotic genomes[edit]. See also: Eukaryotic chromosome fine structure. Eukaryotic genomes are ...
- 2High-resolution human genome structure by single-molecule ...
This report presents the analysis of structural variation in four human genomes using Optical Map...
- 3The relationship between genome structure and function
Over the past 50 years it has emerged that, broadly speaking, there are three fundamental genomic...
- 4Emerging coronaviruses: Genome structure, replication, and
The genome of CoVs is a single-stranded positive-sense RNA (+ssRNA) (~30 kb) with 5′-cap structur...
- 5Emerging coronaviruses: Genome structure, replication, and ...
The genomic structure and phylogenetic tree of coronaviruses. A, The phylogenetic tree of represe...