Segmented poly(A) tails significantly reduce recombination of ...

文章推薦指數: 80 %
投票人數:10人

In the case of in vitro-transcribed mRNA, the poly(A) tail can be either encoded into the DNA template (PCR product- or plasmid-based) or added ... Skiptomainpagecontent HOME ABOUT SUBMIT SUBSCRIBE ADVERTISE AUTHORINFO ARCHIVE CONTACT HELP SearchforKeyword: GO AdvancedSearch Segmentedpoly(A)tailssignificantlyreducerecombinationofplasmidDNAwithoutaffectingmRNAtranslationefficiencyor half-life ZeljkaTrepotec1, JohannesGeiger2, ChristianPlank2,3, ManishK.Aneja2and CarstenRudolph1,2 1DepartmentofPediatrics,Ludwig-Maximilian-UniversityofMunich,80337Munich,Germany 2EthrisGmbH,Planegg,82152Planegg,Germany 3InstituteofMolecularImmunologyandExperimentalOncology,KlinikumrechtsderIsar,TechnischeUniversitätMünchen,81675 Munich,Germany Correspondingauthor:rudolph{at}ethris.com  NextSection Abstract ExtensiveresearchinthepastdecadehasbroughtmRNAclosertotheclinicalrealizationofitstherapeuticpotential.One commonstructuralfeatureforallcellularmessengerRNAsisapoly(A)tail,whichcaneitherbebroughtincotranscriptionally viatheDNAtemplate(plasmid-orPCR-based)oraddedtothemRNAinapost-transcriptionalenzymaticprocess.Plasmidscontaining poly(A)regionsrecombineinE.coli,resultinginextensiveshorteningofthepoly(A)tail.Usingasegmentedpoly(A)approach,wecouldsignificantlyreduce recombinationofplasmidsinE.coliwithoutanynegativeeffectonmRNAhalf-lifeandproteinexpression.Thiseffectwasindependentofthecodingsequence. Asegmentedpoly(A)tailischaracterizedinthatitconsistsofatleasttwoA-containingelements,eachdefinedasanucleotide sequenceconsistingof40–60adenosines,separatedbyaspacerelementofdifferentlength.Furthermore,reducingthespacer lengthbetweenthepoly(A)segmentsresultedinhighertranslationefficienciescomparedtohomogeneouspoly(A)tailandreduced recombination(dependinguponthechoiceofspacernucleotide).Ourresultsdemonstratethesuperiorpotentialofsegmented poly(A)tailscomparedtotheconventionallyusedhomogeneouspoly(A)tailswithrespecttorecombinationoftheplasmids andtheresultingmRNAperformance(half-lifeandtranslationalefficiency). Keywords poly(A)tail plasmidrecombination mRNAtherapeutics transcripttherapy PreviousSectionNextSection INTRODUCTION ThepastdecadehaswitnessedtheemergenceandrapidapplicationofinvitrotranscribedmessengerRNA(mRNA)asatherapeutic molecule.ComparedtoclassicalgenetherapywithDNA-basedvectors,useofmRNAoffersseveraladvantages,suchastransient expression(KapeliandYeo2012;Lodish2012),lackofnecessitytoenterthenucleus,andnoriskofchromosomalintegration(CannonandWeissman2002;Hacein-Bey-Abinaetal.2003;Bernal2013).AfterovercomingtheintrinsiclimitationsofthemRNA,namelyimmunogenicityandinstability,usingchemicallymodified nucleotides(Karikóetal.2005,2008;Kormannetal.2011),researchershavesignificantlyimprovedthemRNAmoleculebyoptimizingthestructuralelements,namelycap(Grudzien-Nogalskaetal.2013;Ziemniaketal.2013;Kowalskaetal.2014),5′-and3′-UTRs(Ferizietal.2016;Schrometal.2017;Trepotecetal.2018),andcodingsequence(s)(Thessetal.2015;Schrometal.2017).Increasingitsstabilityandtranslationalyieldshasledtoaprogressfromthefirstuseofencodingapotentiallytherapeutic protein(Wolffetal.1990)topreclinical(Bahletal.2017;Richneretal.2017)andclinicalapplications(Mullard2016). Regardlessofthetargetproteinortissue,allcellularproteinencodingRNAswithsomeexceptions(e.g.,histones)share acommonstructuralfeature,thatis,poly(A)tail.Insidethecellnucleus,thepoly(A)tailisaddedtothemRNAinapost-transcriptional mannerdownstreamfromthegene-encodedpolyadenylationsignal(AATAAA).Thepoly(A)tailisessentialforthestability(Sachs1990;OliveiraandMcCarthy1995)andtranslation(Sachs1990;Wellsetal.1998)ofthemRNA.Thepoly(A)tailinthemRNAisrecognizedbypoly(A)-bindingprotein(PABP)whichinturninteractswitheIF4G ofthetranslationinitiationcomplex,therebyformingaclosedloop(Mangusetal.2003;GoldstrohmandWickens2008)andtheresultingmessengerribonucleoproteinparticle. Inthecaseofinvitro-transcribedmRNA,thepoly(A)tailcanbeeitherencodedintotheDNAtemplate(PCRproduct-orplasmid-based) oraddedenzymaticallytothemRNAinaseparatestepafterinvitrotranscription.Eachoftheabovementionedapproaches hasitsownsetoflimitations.WhilePCRofferstheeaseofhighthroughputandiswidelyusedforsmall-scalemRNAproduction (uptoafewhundredmilligrams),highproductioncosts,andriskofmutagenesisduringPCRamplification(comparedtoplasmid productioninbacteria)limititsusefulnessforlarge-scaleproduction(severalgrams).Plasmidproductionontheotherhand iswellestablished,canbeperformedunderGMPconditions,haslowerproductioncostsandrisksofmutations(inthecoding sequence)whencomparedtoaPCR-basedapproach.However,plasmidDNAencodedhomopolymericstretches[e.g.,poly(A)]recombine duringbacterialamplificationoftheplasmidDNA.Previousstudiesreportedgenerationofspontaneousdeletionmutantsduring amplificationofplasmidsstartingwith∼100bpofpoly(dA:dT)sequences(Preissetal.1998).Forlongerpoly(A)s,forexample,poly(A)150,theinstabilityistoohightoallowisolationofanysinglepositiveclone(Grieretal.2016).Despitethislimitation,template-encodedpoly(A)offerscertainadvantagesoverenzymaticpost-polyadenylationofmRNA, suchasdefinedandreproduciblepoly(A)lengthresultinginahomogenousproduct(Holtkampetal.2006).Althoughenzymaticpost-polyadenylationofmRNAwarrantssufficientlylongpoly(A)tails(CaoandSarkar1992;MartinandKeller1998),thecompositionofthefinalproductduetodifferentpoly(A)lengthsisdifficulttocontrolandthereforemightnotmeet regulatoryrequirements(Weissman2015). Inadditiontotheabovelistedadvantagesofcotranscriptionalpolyadenylation,thereducednumberofstepsinRNAproduction arelikelytotranslatetolowerproductioncosts.Moreover,enzymaticpolyadenylationofmRNAneedstobecarriedoutunder alkalineconditions,astheenzymepoly(A)polymerasehashighestactivityatpH>7.5.mRNAishighlysusceptibletoalkaline hydrolysiswhichinturnresultsinpoorermRNAquality,especiallywithlongertranscripts(>3kb).(VoetandVoet2011) Asanalternativetocircularplasmids,Grieretal.(2016)haveproposedtheuseofalinearplasmidsystem,pEVL,whichallowsstablecloningofpoly(A)sofupto500bp.Asimilar linearvector-basedsystem(pJAZZ)iscommerciallyavailablefromLucigenbutsuffersfromlimitationsoflargevectorsize (>12kb),limitedchoiceforcloningenzymes(availableonlyaseitherSmaIorNotIpredigestedvector)andisaverylow copyvector.Havingaplasmidtemplate-encodedpoly(A)tailwhichisnotpronetorecombinationbutstillsupportsmRNAstability andtranslationalefficiencyincomparablemannertoaconventionalnaturalpoly(A)wouldbeanidealsolutiontotheabovementioned limitations. Themainaimofthepresentstudywastoinvestigateifsegmentationofthepoly(A)tailcouldreducerecombinationofahigh copyplasmidvectorinE.coli.Forthis,themostwidelyusedbutrelativelyunstablepoly(A)tailof∼120A's[poly(A)120]wassplitintoeithertwoorthreesegmentsof40A's[poly(A)3×40]or60A's[poly(A)2×60],respectively.Thesegmentationschemewasdesignedkeepinginmindthefunctional“PABPfootprint”onmRNA.WhilePABP requiresaminimumof12adenosinestobind,proteinoligomerscanbindtothesamepoly(A)stretch,therebyformingarepeating unitof∼27–30nt(BaerandKornberg1980,1983;Wangetal.1999).Moreover,theworkbyPreissetal.showedthatasinglePABPmoleculeboundtomRNA,whileinteractingwiththe5′cap structurewasnotsufficientforpromotingtranslation(Preissetal.1998).Basedonthesedata,ourconstructsweredesignedtoenableatleastoneoligomericstretchofPABPpersegment(30nt). Besidesrecombination,translationefficiencyandmRNAhalf-lifemeasurementsweremadetocomparetheeffectonsegmentation onthesecriticalattributesofthemolecule.Heretoo,poly(A)120wasusedasabenchmarkasithasbeenshowninpreviousstudiestoresultinhighproteinexpression(Holtkampetal.2006;Bangel-Rulandetal.2013).Weshowthatsegmentationofthepoly(A)tail,doesnotnegativelyaffecttranslationalyieldandmRNAhalf-life,buteases thetechnicaldifficultiesconnectedwithrecombinationofhomopolymericpoly(A)stretchesinplasmidvectors. PreviousSectionNextSection RESULTSANDDISCUSSION Thecurrentstudyonsegmentationofpoly(A)intosmallerfragmentsseparatedbyspacerelementswaspromptedbytechnical challengesoftenmetwhiledesigningandproducingplasmidDNAtemplatesforuseininvitrotranscriptiontoproducemRNA foruseastranscripttherapies. Designofmodified/segmentedpoly(A)tails InordertoproducerecombinantRNAtranscriptswithsegmentedpoly(A)tails,thecorrespondingDNAsequenceswerecloned intoaplasmidvectordownstreamfromthegeneofinterest(GOI).Figure1schematicallyshowsthecompositionofdifferentpoly(A)tailsandtheirspacerseparators.Themostconventionallyused standardpoly(A)tailinplasmidvectors(Holtkampetal.2006;Kormannetal.2011;Vallazzaetal.2015;Balmayoretal.2016,2017;Ferizietal.2016)containing∼120A's[poly(A)120]wasspliteitherintothreesegments,eachcomprising40A'sseparatedbyaNsiIrestrictionsiteof6nt[poly(A)3×40_6]orintotwoequalsegmentsof60A's,alsoseparatedby6nt[poly(A)2×60_6].Thisway,wecouldcontrolthesizeofeachsegmentandstillhaveaphysicalseparatoramongadenosines.Accordingto previousliterature(BaerandKornberg1980,1983;Wangetal.1999),aminimumof12adenosinesareneededforthebindingofasinglePABPmolecule.However,asinglePABPboundtopoly(A) isnotenoughtosupporttranslation,eventhoughitcaninteractwiththeeIF4complex(Preissetal.1998).Thesegmentsofpoly(A)3×40_6andpoly(A)2×60_6arelongenoughtoensurebindingofmorethanthreecopiesofPABPpersegment.Inordertoinvestigatetheroleofthe spacerlengthbetweenthetwoA60segments,besidestheoneseparatedby6nt,fiveadditionalconstructsweresynthesized withaspacerlengthofeither12[poly(A)2×60_12],24[poly(A)2×60_24]nt,or1nt[poly(A)2×60_C,poly(A)2×60_G,poly(A)2×60_T]. Viewlargerversion: Inthiswindow Inanewwindow DownloadasPowerPointSlide FIGURE1. Schematicrepresentationofallcombinationsofpoly(A)modificationstestedinthecurrentstudy.Differenthomo-orheteropolymeric poly(A)stretcheswereinserteddownstreamfromthegeneofinterest(GOI). Segmentedpoly(A)tailsreducerecombinationofpoly(A)-containingplasmidsinE.coli Instabilityofpoly(A)-containingplasmidsinE.colihasbeenpreviouslyreported(KühnandWahle2004;Godiskaetal.2009)andisamajorriskoffailurewhenusingsuchpoly(A)-containingplasmidsforlarge-scalemRNAproduction.Weexamined whethertheuseofsegmentedpoly(A)affectedtherecombinationefficiencyofplasmidspost-transformationintoE.coli.Totestthis,codingregionsfordifferentproteins(d2EGFP,luciferase,andhEPO)wereclonedupstreamofthesepoly(A) formats[poly(A)120,poly(A)2×60_6,poly(A)3×40_6]intoapUC57-Kanamycin(GenScript)vector.Post-transformationintoE.coli,cloneswerescreenedforinsertandpositiveclones(containingthedesiredinsert)wereadditionallyscreenedforthelength ofthepoly(A)region.Foreachofthepoly(A)formats,thepoly(A)regionwasdigestedwithrestrictionenzymesandthedigestions wereresolvedonFragmentAnalyzer(capillarygelelectrophoresis)tomeasurethesizeofthepoly(A)fragment.Asexpected, recombinationinthepoly(A)regionwasobservedformorethan50%oftheclonescontainingahomologouspoly(A),poly(A)120.Theproportionofrecombinationobservedwiththepoly(A)120formatwassequence-independentandcomparabletothevaluesreportedbyGrieretal.(2016).Bysplittingthepoly(A)intoeitherpoly(A)3×40orpoly(A)2×60,recombinationinE.colicouldbereducedwithmoststableclones(<20%recombination)obtainedwithplasmidscontainingpoly(A)2×60_6(Fig.2).Thistrendwasobservedforallthetestedsequencesindicatingthisreductioninrecombinationtobesequence-independent. Viewlargerversion: Inthiswindow Inanewwindow DownloadasPowerPointSlide FIGURE2. Quantificationofpoly(A)tailrecombinationforA120andsegmentedpoly(A)tailsofpoly(A)3×40_6andpoly(A)2×60_6.(n)Totalnumberofclonesofd2EGFP,luciferase,andhEPOsequencestestedwithaparticularpoly(A)format. Effectsofpoly(A)segmentationonmRNAproductivity Encouragingresultsofreducedrecombinationpromptedustoinvestigatetheperformanceofoursegmentedpoly(A)tailswith respecttomRNAstabilityandexpression.Forthis,thecodingregionofd2EGFP(destabilizedEGFPwitharelativelyshortproteinhalf-life)wasclonedintoourdifferentpoly(A)-containingvectorsand chemicallymodifiedmRNA(modification1)wasproducedusingpreviouslydescribedprotocols(Kormannetal.2011;Trepotecetal.2018).TheresultingmRNAsweretransfectedintoA549cellsandatdifferenttimepointspost-transfection(4,24,48,and72 h),bothd2EGFPproteinandmRNAwerequantifiedusingFACSandreal-timereversetranscriptasePCR,respectively(Fig.3).Comparablelevelsofd2EGFPproteinwereobservedforsegmentedpoly(A)constructscomparedtothecontrolA120atall fourtimepoints.Comparablelevelsofd2EGFPmRNAwereobservedforallpoly(A)formats,exceptat24-hpost-transfection, wherelowermRNAamountswerequantifiedforthesegmentedpoly(A)formats.Similartoourpreviouslypublishedwork(Ferizietal.2016),wecalculatedthemRNAproductivity,definedastheamountofprotein(d2EGFPmedianfluorescenceintensity)normalized totheamountofmRNA(quantifiedviaqPCR)forthethreepoly(A)formats.Surprisingly,highermRNAproductivitieswereobserved forsegmentedpoly(A)constructsatearliertimepoints(4and24h)comparedtoA120format. Viewlargerversion: Inthiswindow Inanewwindow DownloadasPowerPointSlide FIGURE3. Determinationofd2EGFPproteinexpressionandmRNAquantificationofdifferentpoly(A)-containingd2EGFPmRNAspost-transfection inA549cells.(A)MeanMFI(medianfluorescenceintensity)at4-,24-,48-,and72-hpost-transfection,measuredbyFACSinA549cells.(B)d2EGFPmRNAquantificationinA549cells.(C)mRNAproductivitywascalculatedbydividingthemeanMFI(FACSdata;A)bythemRNAamounts(real-timePCRdata;B)andnormalizingtheseratiostothoseobservedwithpoly(A)120construct.Valuesrepresentmean±SDofthreereplicates.Statisticalsignificancewasassessedbytwo-wayANOVAtestwith P-values:(*)P<0.5,(**)P<0.01,(***)P<0.001,(****)P<0.0001. Similartotheexperimentswithd2EGFP,luciferaseproteinandmRNAquantificationwasinvestigatedinA549cellsat24-h post-transfectionwithluciferase-encodingmRNA,containingeitherofthepoly(A)formats[poly(A)2×60_6,poly(A)3×40_6vs.poly(A)120].Furthermore,toaddresstheeffectofnucleotidemodifications,luciferasemRNAswereproducedusingeitherunmodified nucleotides,modification1ormodification2nucleotides.Thesemodificationshavebeendescribedpreviously(Trepotecetal.2018).Briefly,modification1included25%5-methylcytidineand25%2-thiouridine.Asforthemodificationset2,35%5-iodouridine and7.5%5-iodocytidinewereusedintheIVTreactionforRNAproduction.Asanadditionalbenchmark,apreviouslypublished construct(Thessetal.2015)comprisinghomopolymericAstretch(A63),homopolymericCstretch(C31)andhistonestem–loop(ACH;Fig.1)wasused.AshistonemRNAslackpoly(A)tails,thefunctionsofpoly(A),thatis,stabilityandtranslationefficiencyare performedbytheconservedstem–loop(WilliamsandMarzluff1995;Zanieretal.2002).Useofsegmentedpoly(A)2×60_6constructsignificantlyincreasedproteinlevelspost-transfectioninamodification-independentmannerwhencomparedto poly(A)120andACHbenchmarks(Fig.4).NodrasticdifferenceswereobservedbetweenthemRNAamountsforthedifferentpoly(A)formatcontainingluciferasemRNAs acrossmodifications.Poly(A)2×60_6constructwasmoreproductivethananyotherpoly(A)formatwhenusingmodificationsets1or2.Theconstructwithhairpin structures(ACH)expressedsignificantlylessamountsofluciferasecomparedtoallotherconstructscontaining120adenosines despitethesethreeconstructsbeingpresentinthecellinsubstantialamounts(qPCRdata).Thereducedtranslationefficiency ofhairpin-containingconstructsisfurtherconfirmedbycalculatingthemRNAproductivities. Viewlargerversion: Inthiswindow Inanewwindow DownloadasPowerPointSlide FIGURE4. DeterminationofluciferaseexpressionandmRNAquantificationofdifferentpoly(A)-containingluciferasemRNA24-hpost-transfection inA549cells.(A)Luciferaseactivity,measuredasrelativelightunits(RLU:arbitraryunits)inproteinlysatesfromA549cellstransfected withdifferentpoly(A)-containingluciferaseRNAmeasured24-hpost-transfection.(B)LuciferasemRNAquantificationinA549cells.(C)mRNAproductivitywascalculatedbydividingtheluciferaseexpressionvalues(RLU;A)bythemRNAamounts(real-timePCRdata;B)andnormalizingtheseratiostothoseobservedwithpoly(A)120construct.Valuesrepresentmean±SDofsixreplicates.Statisticalsignificancewasassessedbytwo-wayANOVAtestwith P-values:(*)P<0.5,(**)P<0.01,(***)P<0.001,(****)P<0.0001. Effectsofpoly(A)segmentationontranslationofphysiologicaltargets Theinitialresultsofreducedrecombinationandcomparable/highermRNAproductivitycomparedtopoly(A)120,withintracellularreporterproteins(d2EGFPandluciferase),promptedustofurthertestthepoly(A)2×60_6formatwithadditionalphysiologicaltargets.TheselectedtargetsvariedinthelengthoftheirmRNAsandcellularlocalization oftheprotein:humanerythropoietin(0.9kb)asaprototypeofasecretoryproteinandhumancysticfibrosistransmembrane conductanceregulator(CFTR;4.5kb)asaprototypeofamembraneprotein. ThecodonoptimizedsequenceencodinghEPOwasclonedintopUC57-Kanamycinvectorupstreamofeitherpoly(A)120orpoly(A)2×60_6.mRNAwasproducedforeachoftheconstructsusingeitherunmodified,modification1ormodification2setsofnucleotides. SinceEPOisprimarilysecretedbykidneycells,transfectionexperiments,attwodoses,wereperformedinhumanHEK293cells. ProteinconcentrationsweredeterminedviaELISAat24-,48-,and72-hpost-transfection(Fig.5).Withsomeexceptions(e.g.,unmodifiedRNAat24hand72handmodification1at72h),nosignificantdifferenceswere observedbetweenthecomparedpoly(A)formatsatanyofthecompareddoses,timepointsormodifications. Viewlargerversion: Inthiswindow Inanewwindow DownloadasPowerPointSlide FIGURE5. QuantificationofsecretedhumanerythropoietinproteinlevelsasmeasuredviaELISAinsupernatantsfromHEK293cellstransfected eitherwithpoly(A)120-orpoly(A)2×60-containingEPOmRNAat24h(A),48h(B),and72h(C)post-transfection.Valuesrepresentmean±SDofthreereplicates.Statisticalsignificancewasassessedbytwo-wayANOVA testwithP-values:(**)P<0.01,(***)P<0.001,n=3. Tofurtherinvestigatetherelationshipbetweenphysiologicalgeneexpressionandpoly(A)tailsegmentation,wefocusedon mRNAconstructsencodinghumanCFTRfurnishedwitheitherpoly(A)2×60_6orpoly(A)120.Bothconstructswereproducedwithunmodifiedsetofnucleotides,andtransfectionexperimentswithCFTRmRNAwereperformed in16HBE14o-cells.OnlyunmodifiedCFTRmRNAwasused,asapreviousstudy(Bangel-Rulandetal.2013)hasdemonstratedfunctionalrestorationofCFTRinhumanCFairwayepitheliaaftertransfectionwithunmodifiedCFTRmRNA containingapoly(A)tailof120A's. At24hand48hpost-transfection,cellswerelysedandwesternblotwasperformedfortheCFTRprotein.Hsp90wasusedas ahousekeeper.Similartoourpreviousresultswithd2EGFP,luciferaseandhEPO,useofsegmentedpoly(A)2×60_6didnotnegativelyaffecttheresultingproteinamountspost-transfectionwhencomparedtotheconventionallyusedpoly(A)120(Fig.6). Viewlargerversion: Inthiswindow Inanewwindow DownloadasPowerPointSlide FIGURE6. RelativequantificationofCFTRproteinin16HBE14o-lysatesasmeasuredviawesternblot.(A)16HBE14o-cellsweretransfectedeitherwithpoly(A)120-orpoly(A)2×60_6-containinghCFTRmRNAandproteinlysatesanalyzedat24and48hpost-transfection.(B)Densitometryanalysisofwesternblotimages.Valuesrepresentmean±SDoftworeplicates.Statisticalsignificancewas assessedbypairedt-testwithP-values:ns=P>0.5. Spacerregionexpansioninpoly(A)2×60 Reducedrecombinationwithsegmentedpoly(A)2×60_6withcomparable(d2EGFP,EPO,CFTR)orhigher(luciferase)translationwithoutsignificanteffectsonmRNAstabilityprompted ustofurtherinvestigatethespacerlengthofthisspecificpoly(A)format.Fortheeaseofexperimentalfeasibility,two newluciferaseconstructsweremadewithlongerspacers[12and24nt:constructpoly(A)2×60_12andpoly(A)2×60_24inFigure1].ThedifferentluciferasemRNAs(unmodified,modification1andmodification2)forthethreepoly(A)formats[poly(A)2×60_6,poly(A)2×60_12,andpoly(A)2×60_24]weretransfectedintoA549cells.At24hpost-transfection,significantlylowerluciferaseexpressionwasobservedwith longerspacersusingunmodifiedandmodification1containingmRNA(Fig.7).Thesemodification-specificeffectscouldbeduetothespacerregion,uponincorporationofchemicallymodifiednucleotides affectingthebindingofPABPtothetwosegmentsofpoly(A).Withtwoexceptions[poly(A)2×60_24unmodifiedandpoly(A)2×60_6modification1],comparablelevelsofluciferasemRNAcouldbequantifiedinthecells.Therefore,increasingthespacer lengthtomorethan6ntinsegmentedpoly(A)2×60_6taildidnotresultinanysignificantadvantage,neitherintranslationnorinmRNAstability. Viewlargerversion: Inthiswindow Inanewwindow DownloadasPowerPointSlide FIGURE7. DeterminationofluciferaseexpressionandmRNAquantificationofdifferentpoly(A)-containingluciferasemRNAat24hpost-transfection inA549cells.(A)Luciferaseactivity,measuredasrelativelightunits(RLU:arbitraryunits),inproteinlysatesfromA549cellstransfected withdifferentpoly(A)-containingluciferasemRNA.(B)LuciferasemRNAquantificationinA549cellstransfectedwithdifferentpoly(A)-containingluciferasemRNA.(C)mRNAproductivitywascalculatedbydividingtheluciferaseexpressionvalues(RLU;A)bythemRNAamounts(real-timePCRdata;B)andnormalizingtheseratiostothoseobservedwithpoly(A)120construct.Valuesrepresentmean±SDofsixreplicates.Statisticalsignificancewasassessedbytwo-wayANOVAtestwith P-values:(*)P<0.5,(**)P<0.01,(****)P<0.0001. Spacerregionreductioninpoly(A)2×60 Thenextsetofexperimentswasaddressedtoexaminingtheeffectofreducingthespacerlengthtoasinglenucleotidein poly(A)2×60segmentedpoly(A)tailonproteinexpressionandmRNAproductivity.Allthreepossibleconstructs(withC,T,orGasaspacer) weremade.Foreachconstruct,unmodified,modification1andmodification2containingmRNAswereproduced.Thedifferent luciferasemRNAswerecomparedinA549cells.Asabenchmark,standardpoly(A)120wasused.Independentoftheusedspacernucleotide/modifications,allthreesegmentedpoly(A)constructsresultedinsignificantly higherluciferaseexpressionwhencomparedtopoly(A)120(Fig.8).Withafewexceptions,mRNAlevelswerecomparableforthedifferentluciferasemRNAs.Irrespectiveofthespacernucleotide, segmentedpoly(A)constructsweremoreproductivethanthestandardpoly(A)120.Amongthethreespacernucleotides,nosignificantdifferencescouldbeobserved.SincethemRNAstabilitywasnotaffected, itisverylikelythatsegmentedpoly(A)withasinglenucleotidespaceraugmentedtranslation.Besidesincreasingtranslation, incorporationofasingleGasaspacerfurtherreducedrecombinationfrom20%[asobservedwithpoly(A)2×60_6]tozero(Fig.9).AspacerwithasinglenucleotideofTrecombinedin10%ofcases,andtheonewithaCasaspacernucleotiderecombined in50%ofcases,whichinturniscomparabletorecombinationobservedwithA120(Fig.2).Identificationofthemechanismsunderlyingtheobservedreducedrecombinationandenhancedtranslationwithsegmented poly(A)2×60_1comparedtoclassicalpoly(A)120willbethesubjectoffuturestudies. Viewlargerversion: Inthiswindow Inanewwindow DownloadasPowerPointSlide FIGURE8. DeterminationofluciferaseexpressionandmRNAquantificationofdifferentpoly(A)-containingluciferasemRNAat24hpost-transfection inA549cells.(A)Luciferaseactivity,measuredasrelativelightunits(RLU:arbitraryunits),inproteinlysatesfromA549cellstransfected withdifferentpoly(A)-containingluciferasemRNA.(B)LuciferasemRNAquantificationinA549cellstransfectedwithdifferentpoly(A)containingluciferasemRNA.(C)mRNAproductivitywascalculatedbydividingtheluciferaseexpressionvalues(RLU;A)bythemRNAamounts(real-timePCRdata;B)andnormalizingtheseratiostothoseobservedwithpoly(A)120construct.Valuesrepresentmean±SDofsixreplicates.Statisticalsignificancewasassessedbytwo-wayANOVAtestwith P-values:(*)P<0.5,(****)P<0.0001. Viewlargerversion: Inthiswindow Inanewwindow DownloadasPowerPointSlide FIGURE9. Quantificationofpoly(A)tailrecombinationrateforsegmentedpoly(A)tailswithasinglenucleotidespacer.(n)Totalnumberofclonesofluciferasetestedwithaparticularpoly(A)format. Theseresultsallowustorecommendasegmentedpoly(A)region[poly(A)2×60]witheithera6orasinglenucleotide(G/T)spacerforuseinplasmid-basedvectorsforRNAproduction.Usingsuchasegmented poly(A)didnothaveanynegativeeffectonproteinexpressionandmRNAhalf-lifebutreducedrecombinationofplasmidsin E.coli. PreviousSectionNextSection MATERIALSANDMETHODS Plasmidpreparation Thesyntheticpoly(A)sequenceswereintroducedtothevectorbackboneeitherasannealedcomplementaryoligonucleotidesor fragmentscreatedbyPCR(Table1).Forsequencescomprisingof2×60,3×40,andACH,specificsetsofcomplementaryoligonucleotidesweresynthesizedand annealed.Thesyntheticpoly(A)fragmentsofA120,2×60_1,2×60_12,and2×60_24werecreatedbyPCR. Viewthistable: Inthiswindow Inanewwindow TABLE1. Segmentedpoly(A)sequencesandtheircorrespondingcloningstrategyusingeitherPCRprimersetsoroligonucleotides Annealingofcomplementaryoligonucleotideswasperformedasfollows:100µMofeacholigonucleotideweremixedwith40µL annealingbuffer(10mMTris-HCl,50mMNaCl,1mMEDTA,pH7.5)andincubatedfor5minat95°C.Subsequently,themixture waslettocooldowntoroomtemperaturebeforeproceedingwithrestrictiondigestion(BglII-BstBI). ForthehighperformanceofPCRreaction,PhusionHigh-fidelityPCRmastermix(ThermoFisherScientific)wasused.Tothe mastermix,whichcontains2×PhusionDNAPolymerase,nucleotidesandoptimizedreactionbufferincludingMgCl2,0.5µMofforwardandreverseprimer,3%DMSO,and1ngoftemplateDNAwereaddedtothereaction.Thetotalvolumeof 25µLperreactionwasinitiallydenaturedat98°Cfor30sec,followingby30cyclesat98°Cfor10sec,annealingat72°C for30sec,andextensionat72°Cfor30sec/kb.Thefinalextensionwasperformedat72°Cfor10min.ThesizeofthePCR productwasconfirmedon1%agarosegelandthedesiredbandwaspurifiedusingNucleoSpinGelandPCRclean-upkit(Macherey Nagel).PurifiedPCRproductwasdigestedwithNheI-BstBIandstoredat−20°Ctillfurtheruse. DigestedproductsofannealedoligonucleotidesandPCRproductswereclonedintoaccordinglydigestedpUC57-Kanavector(GenScript) containingthedesiredcodingsequences(fireflyluciferase,d2EGFP,humanEPO,andhumanCFTR). GenerationofmRNA TogenerateinvitrotranscribedmRNA,plasmidswerelinearizedbyBstBI(ThermoFisherScientific)digestionandpurified bychloroformextractionandethanolprecipitation.Purifiedlinearplasmidswereusedasatemplateforinvitrotranscription. Plasmidtemplates(0.5µg/µL)weresubjectedtoinvitrotranscriptionusing3U/µLT7RNApolymerase(ThermoFisherScientific), transcriptionbufferII(EthrisGmbH),1U/µLRiboLockRnaseinhibitor(ThermoFisherScientific),0.015U/µLinorganicpyrophosphatase 1(ThermoFisherScientific)withadefinedchoiceofnaturalandchemicallymodifiedribonucleotides(JenaBiosciences). Themodificationset1wassynthetizedusing5-methylcytidine(25%)and2-thiouridine(25%),inadditiontounmodifiednucleotides. Formodificationset2,insteadof5-methylcytidine(25%)and2-thiouridine(25%),5-iodouridine(35%),and5-iodocytidine (7.5%)wereused.ThecompleteIVT-mixwasincubatedat37°Cfor2h.Afterwards,0.01U/µLDNaseI(ThermoFisherScientific) wasaddedforanadditional45minat37°Ctoremovetheplasmidtemplate.RNAwasprecipitatedwithammoniumacetateata finalconcentrationof2.5mM,followedbytwowashingstepswith70%ethanol.Thepelletwasre-suspendedinaquaadinjectabilia. AC1-m7Gcapstructurewasaddedenzymaticallyby0.5mMVacciniaVirusCappingEnzyme(NewEnglandBiolabs)tothe5′end ofthepreviouslydenaturedtranscript(1mg/mL)at80°Cfor5min.Thecappingreactionmixalsocontained1×cappingbuffer (NewEnglandBiolabs),0.5mMGTP(NewEnglandBiolabs),0.2mMS-methyladenosine(NewEnglandBiolabs),2.5U/µLmRNACap 2′-O-Methyltransferase(NewEnglandBiolabs),and1U/µLRiboLockRNaseInhibitor(ThermoFisherScientific).Thecapping mixturewasincubatedfor60minat37°C,followedbyRNAprecipitationwithammoniumacetateatafinalconcentrationof 2.5mMandtwowashingstepswith70%ethanol.Thepelletwasre-suspendedinaquaadinjectabilia. RNAqualityandconcentrationweremeasuredspectrophotometricallyonaNanoDrop2000C(ThermoFisherScientific).Itscorrect sizeandpurityweredeterminedviaautomatedcapillaryelectrophoresis(FragmentAnalyzer,AdvancedAnalytical). Cellculture A549(ACC-107)andHEK293(ACC-305)cellswerepurchasedfromDSMZ.16HBE14o-cellswerekindlyprovidedbyProfessorWeber (UniversityofMuenster,Germany). Allcellswerecultivatedinminimumessentialmedia(MEM)withGlutamax(Gibco/LifeTechnologies).Mediaweresupplemented with10%heat-inactivatedfetalbovineserum(FBS;Gibco/LifeTechnologies)and1%penicillin/streptomycin(Gibco/LifeTechnologies). Cellswereculturedinahumidified5%CO2incubatorat37°C. Invitrotransfection A549andHEK293cellswereseededatthedensityof2×104cells/welland4×104cells/well,respectively,ina96-wellplate,forthepurposeoffireflyluciferase,FACSmeasurementsandEPOELISAassay. 16HBE14o-cellswereseededina6-wellplateatthedensityof7.5×105cells/well,forthepurposeofwesternblotanalysis.At24-hpost-seeding,cellsweretransfectedusingthecommercialtransfection reagentLipofectamine2000(ThermoFischerScientific).Complexeswerepreparedataratioof2µLLipofectamine2000per 1µgmRNA.A549andHEK293cellsweretransfectedwith250ng/welland250and125ng/wellmRNA,respectively.Forexperiments inA549andHEK293cells,requiredamountsofmRNAweredilutedinwaterandtheneededamountsofLipofectamine2000inserum-free MEM.mRNAwasaddedtotheLipofectamine2000solutionfollowedby20minincubationatRT.Theconcentrationofthefinal mRNA/Lipofectamine2000solutionwas25ng/µL.Tenmicrolitersofthecomplexsolutionwasaddedtothecellsandcellswere incubatedfor24h.ForeverymRNAconstruct,replicatesofthreeorsixwereprepared.For16HBE14o-cells,Lipofectamine MessengerMaxwasusedduetoitssuperiortransfectionefficiency(datanotshown).Fortransfection,7.5µgmRNAwasdiluted in125µLwater,and11.25µLLipofectamineMessengerMaxseparatelyin125µLserum-freeMEM.ThemRNAsolutionwasadded totheLipofectamineMessengerMaxsolutionfollowedby5minincubationtimeatRT.Atotalvolumeof250µLofthelipoplex solutionwasaddedtothecellscontaining2mLnormalgrowthmedia.Themediawaschanged4haftertransfection. Flowcytometryanalysisford2EGFP CellswerewashedwithPBS,detachedwithTrypLE(Gibco/LifeTechnologies),andre-suspendedinflowcytometrybuffer(PBS supplementedwith10%FBS).Shortlybeforemeasurement,cellswerestainedwithpropidiumiodidefordiscriminationbetween liveanddeadcells(1µg/mL;SigmaAldrich).AnalysiswasperformedonanAttuneAcousticFocusingCytometer(LifeTechologies) withAttuneCytometricSoftware(version2.1;LifeTechnologies)andFlowJo(version10). Fireflyluciferaseassay Fordetectionoffireflyluciferaseactivity,theassaywasperformed24hpost-transfection.CellswerewashedwithPBS, followedbyadditionof100µLlysisbuffer(25mMTris-HCl,0.1%TritonX-100,pH7.4).Cellswereshakenfor20minatroom temperature.Afterlysis,50µLofthecelllysatewasusedtomeasureluciferaseactivityviaphotonluminescenceemission for5secusingInfiniteR200PRO(Tecan).Theproteinamountineachsamplewasquantifiedin5µLofthecelllysatewith Bio-Radproteinassay(Bio-Rad),usingbovineserumalbuminasastandard.Luciferasevalueswerenormalizedtotheprotein concentrations. WesternblotanalysisforhumanCFTR CellswerelysedwithRIPAbuffer(50mMTris,pH8.0,150mMNaCl,1%TritonX-100,0.5%sodiumdeoxycholate,and0.1%sodium dodecylsulfate).Totalproteinamountwasdeterminedbythebicinchoninicacid(BCA)assay,followingmanufacturer'sinstructions (ThermoFisherScientific).Celllysateswereseparatedon3%–8%TRIS-Acetategels(ThermoFisherScientific)andtransferred topolyvinylidenefluoride(PVDF)blottingmembranes(Bio-Rad).MembraneswereblockedinWesternBreezeblockingbuffer(Thermo FisherScientific)andprobedwithantibodiesagainstCFTR(R&DSystemsMAB25031;1:2.000)andHsp90(OrigeneTA500494;1:15.000). Horseradishperoxidase(HRP)-conjugatedanti-mouseantibody(1:10.000;ab6820;Abcam)wasusedassecondaryantibody.Blots ofCFTRweredevelopedusingSuperSignalWestFemto(ThermoFischerScientific),andofHsp90usingLuminataForteWestern HRPSubstrate(Millipore). Enzyme-linkedimmunosorbentassayforhEPO QuantificationofhEPOproteinincellsupernatantswasperformedusinghumanErythropoietinQuantikineIVDELISAkit(R&D Systems)followingmanufacturer'sinstructions. RNAisolationandreversetranscription RNAwasisolatedatdifferenttimepointspost-transfectionusingSingleShotCellLysiskit(Bio-Rad)followingmanufacturer's protocol.PriortoRNAextraction,thecellculturemediawasremovedandcellswerewashedtwicewithPBSbeforebeinglysed inrespectiveRNAisolationbuffer.Fromthelysates(1µgofRNA),cDNAwassynthesizedusingiScriptSelectcDNASynthesis kit(Bio-Rad)witholigo(dT)primersfollowingmanufacturer'sinstructions.ThesynthesizedcDNAwasstoredat−20°C. Quantitativereal-timepolymerasechainreaction(qPCR) Real-timeqPCRwasperformedwithshorthydrolysisprobesford2EGFPandLuciferasetargets(UniversalProbeLibrary#37and #29;Roche)onaRocheLightCycler96(RocheDiagnostics).Ford2EGFP,thefollowingprimerswereused:5′-cctgaagttcatctgcacca-3′ and5′-ctcgtgaccaccctgacc-3′.LuciferasemRNAwasquantifiedusingthefollowingprimers,5′-acgccgagtacttcgagatg-3′and5′-attcagcccatagcgcttc-3′. AbsolutemRNAvalueswerecalculatedbyinterpolationfromthestandardcurve. Statisticalanalysis Eachexperimentwasperformedwithatleastthreetechnicalreplicatespersample.Resultsareshownasmeans±SDunless otherwisestated.StatisticalanalysiswasperformedusingGraphPadPrismsoftware(version6).Dataweretestedfornormal distributionusingD'Agostino-Pearsonomnibusnormalitytest.Multiplecomparisonswereconductedbytwo-wayANOVA,followed bySidak'stest(pairwisecomparison)orDunnett'stest(many-to-onecomparison).AP-value≤0.05wasconsideredstatisticallysignificant. PreviousSectionNextSection ACKNOWLEDGMENTS TheprojectwassupportedbytheNIMExcellenceCluster. PreviousSectionNextSection Footnotes Articleisonlineathttp://www.rnajournal.org/cgi/doi/10.1261/rna.069286.118. ReceivedOctober18,2018. AcceptedDecember22,2018. ©2019Trepotecetal.;PublishedbyColdSpringHarborLaboratoryPressfortheRNASociety ThisarticleisdistributedexclusivelybytheRNASocietyforthefirst12monthsafterthefull-issuepublicationdate(seehttp://rnajournal.cshlp.org/site/misc/terms.xhtml).After12months,itisavailableunderaCreativeCommonsLicense(Attribution-NonCommercial4.0International),asdescribed athttp://creativecommons.org/licenses/by-nc/4.0/. PreviousSection  REFERENCES ↵ BaerBW,KornbergRD.1980.Repeatingstructureofcytoplasmicpoly(A)-ribonucleoprotein.ProcNatlAcadSci77:1890–1892.doi:10.1073/pnas.77.4.1890 Abstract/FREEFullText ↵ BaerBW,KornbergRD.1983.Theproteinresponsiblefortherepeatingstructureofcytoplasmicpoly(A)-ribonucleoprotein.JCellBiol96:717–721.doi:10.1083/jcb.96.3.717 Abstract/FREEFullText ↵ BahlK,SennJJ,YuzhakovO,BulychevA,BritoLA,HassettKJ,LaskaME,SmithM,AlmarssonÖ,ThompsonJ,etal.2017.PreclinicalandclinicaldemonstrationofimmunogenicitybymRNAvaccinesagainstH10N8andH7N9influenzaviruses.MolTher25:1316–1327.doi:10.1016/j.ymthe.2017.03.035 CrossRefGoogleScholar ↵ BalmayorER,GeigerJP,AnejaMK,BerezhanskyyT,UtzingerM,MykhaylykO,RudolphC,PlankC.2016.ChemicallymodifiedRNAinducesosteogenesisofstemcellsandhumantissueexplantsaswellasacceleratesbonehealingin rats.Biomaterials87:131–146.doi:10.1016/j.biomaterials.2016.02.018 CrossRefGoogleScholar ↵ BalmayorER,GeigerJP,KochC,AnejaMK,vanGriensvenM,RudolphC,PlankC.2017.ModifiedmRNAforBMP-2incombinationwithbiomaterialsservesasatranscript-activatedmatrixforeffectivelyinducing osteogenicpathwaysinstemcells.StemCellsDev26:25–34.doi:10.1089/scd.2016.0171 CrossRefGoogleScholar ↵ Bangel-RulandN,TomczakK,FernándezFernándezE,LeierG,LeciejewskiB,RudolphC,RoseneckerJ,WeberWM.2013.Cysticfibrosistransmembraneconductanceregulator-mRNAdelivery:anovelalternativeforcysticfibrosisgenetherapy.JGeneMed15:414–426.doi:10.1002/jgm.2748 CrossRefGoogleScholar ↵ BernalJA.2013.RNA-basedtoolsfornuclearreprogrammingandlineage-conversion:towardsclinicalapplications.JCardiovascTranslRes6:956–968.doi:10.1007/s12265-013-9494-8 CrossRefMedlineGoogleScholar ↵ CannonG,WeissmanD.2002.RNAbasedvaccines.DNACellBiol21:953–961.doi:10.1089/104454902762053882 CrossRefMedlineGoogleScholar ↵ CaoGJ,SarkarN.1992.IdentificationofthegeneforanEscherichiacolipoly(A)polymerase.ProcNatlAcadSci89:10380–10384.doi:10.1073/pnas.89.21.10380 Abstract/FREEFullText ↵ FeriziM,AnejaMK,BalmayorER,BadieyanZS,MykhaylykO,RudolphC,PlankC.2016.HumancellularCYBAUTRsequencesincreasemRNAtranslationwithoutaffectingthehalf-lifeofrecombinantRNAtranscripts.SciRep6:39149.doi:10.1038/srep39149 CrossRefGoogleScholar ↵ GodiskaR,MeadD,DhoddaV,WuC,HochsteinR,KarsiA,UsdinK,EntezamA,RavinN.2009.LinearplasmidvectorforcloningofrepetitiveorunstablesequencesinEscherichiacoli.NucleicAcidsRes38:e88.doi:10.1093/nar/gkp1181 CrossRefMedlineGoogleScholar ↵ GoldstrohmAC,WickensM.2008.MultifunctionaldeadenylasecomplexesdiversifymRNAcontrol.NatRevMolCellBiol9:337–344.doi:10.1038/nrm2370 CrossRefMedlineWebofScienceGoogleScholar ↵ GrierAE,BurleighS,SahniJ,CloughCA,CardotV,ChoeDC,KruteinMC,RawlingsDJ,JensenMC,ScharenbergAM,etal.2016.pEVL:alinearplasmidforgeneratingmRNAIVTtemplateswithextendedencodedpoly(A)sequences.MolTherNucleicAcids5:e306.doi:10.1038/mtna.2016.21 CrossRefGoogleScholar ↵ Grudzien-NogalskaE,KowalskaJ,SuW,KuhnAN,SlepenkovSV,DarzynkiewiczE,SahinU,JemielityJ,RhoadsRE.2013.SyntheticmRNAswithsuperiortranslationandstabilityproperties.InSyntheticmessengerRNAandcellmetabolismmodulation:methodsandprotocols,methodsinmolecularbiology(ed.RabinovichPM),Vol.969,pp.55–72.SpringerScience+BusinessMedia,NewYork. GoogleScholar ↵ Hacein-Bey-AbinaS,vonKalleC,SchmidtM,LeDeistF,WulffraatN,McIntyreE,RadfordI,VillevalJL,FraserCC,Cavazzana-CalvoM,etal.2003.AseriousadverseeventaftersuccessfulgenetherapyforX-linkedseverecombinedimmunodeficiency.NEnglJMed348:255–256.doi:10.1056/NEJM200301163480314 CrossRefMedlineWebofScienceGoogleScholar ↵ HoltkampS,KreiterS,SelmiA,SimonP,KoslowskiM,HuberC,TureciO,SahinU.2006.Modificationofantigen-encodingRNAincreasesstability,translationalefficacy,andT-cellstimulatorycapacityofdendritic cells.Blood108:4009–4017.doi:10.1182/blood-2006-04-015024 Abstract/FREEFullText ↵ KapeliK,YeoGW.2012.Genome-wideapproachestodissecttherolesofRNAbindingproteinsintranslationalcontrol:implicationsforneurological diseases.FrontNeurosci6:1–15.doi:10.3389/fnins.2012.00144 CrossRefMedlineGoogleScholar ↵ KarikóK,BucksteinM,NiH,WeissmanD.2005.SuppressionofRNArecognitionbyToll-likereceptors:theimpactofnucleosidemodificationandtheevolutionaryoriginof RNA.Immunity23:165–175.doi:10.1016/j.immuni.2005.06.008 CrossRefMedlineWebofScienceGoogleScholar ↵ KarikóK,MuramatsuH,WelshFA,LudwigJ,KatoH,AkiraS,WeissmanD.2008.IncorporationofpseudouridineintomRNAyieldssuperiornonimmunogenicvectorwithincreasedtranslationalcapacityandbiological stability.MolTher16:1833–1840.doi:10.1038/mt.2008.200 CrossRefMedlineWebofScienceGoogleScholar ↵ KormannMSD,HasenpuschG,AnejaMK,NicaG,FlemmerAW,Herber-JonatS,HuppmannM,MaysLE,IllenyiM,SchamsA,etal.2011.ExpressionoftherapeuticproteinsafterdeliveryofchemicallymodifiedmRNAinmice.NatBiotechnol29:154–157.doi:10.1038/nbt.1733 CrossRefMedlineGoogleScholar ↵ KowalskaJ,DelNogalAW,DarzynkiewiczZM,BuckJ,NicolaC,KuhnAN,LukaszewiczM,ZuberekJ,StrenkowskaM,ZiemniakM,etal.2014.Synthesis,properties,andbiologicalactivityofboranophosphateanalogsofthemRNAcap:versatiletoolsformanipulation oftherapeuticallyrelevantcap-dependentprocesses.NucleicAcidsRes42:10245–10264.doi:10.1093/nar/gku757 CrossRefMedlineGoogleScholar ↵ KühnU,WahleE.2004.Structureandfunctionofpoly(A)bindingproteins.BiochimBiophysActa1678:67–84.doi:10.1016/j.bbaexp.2004.03.008 CrossRefMedlineWebofScienceGoogleScholar ↵ LodishHF.2012.Translationalcontrolofproteinsynthesis:theearlyyears.JBiolChem287:36528–36535.doi:10.1074/jbc.X112.420356 Abstract/FREEFullText ↵ MangusDA,EvansMC,JacobsonA.2003.Poly(A)-bindingproteins:multifunctionalscaffoldsforthepost-transcriptionalcontrolofgeneexpression.GenomeBiol4:223.doi:10.1186/gb-2003-4-7-223 CrossRefMedlineGoogleScholar ↵ MartinG,KellerW.1998.Tailingand3′-endlabelingofRNAwithyeastpoly(A)polymeraseandvariousnucleotides.RNA4:226–230. Abstract ↵ MullardA.2016.mRNA-baseddrugapproachesPhaseImilestone.NatRevDrugDiscov15:595.doi:10.1038/nrd.2016.182 CrossRefGoogleScholar ↵ OliveiraCC,McCarthyJEG.1995.TherelationshipbetweeneukaryotictranslationandmRNAstability.JBiolChem270:8936–8943.doi:10.1074/jbc.270.15.8936 Abstract/FREEFullText ↵ PreissT,MuckenthalerM,HentzeMW.1998.Poly(A)-tail-promotedtranslationinyeast:implicationsfortranslationalcontrol.RNA4:1321–1331.doi:10.1017/S1355838298980669 Abstract ↵ RichnerJM,HimansuS,DowdKA,ButlerSL,SalazarV,FoxJM,JulanderJG,TangWW,ShrestaS,PiersonTC,etal.2017.ModifiedmRNAvaccinesprotectagainstZikavirusinfection.Cell169.doi:10.1016/j.cell.2017.03.016 CrossRefGoogleScholar ↵ SachsA.1990.Theroleofpoly(A)inthetranslationandstabilityofmRNA.CurrOpinCellBiol2:1092–1098.doi:10.1016/0955-0674(90)90161-7 CrossRefMedlineGoogleScholar ↵ SchromE,HuberM,AnejaM,DohmenC,EmrichD,GeigerJ,HasenpuschG,Herrmann-JansonA,KretzschmannV,MykhailykO,etal.2017.Translationofangiotensin-convertingenzyme2uponliver-andlung-targeteddeliveryofoptimizedchemicallymodifiedmRNA.MolTherNucleicAcids7:350–365.doi:10.1016/j.omtn.2017.04.006 CrossRefGoogleScholar ↵ ThessA,GrundS,MuiBL,HopeMJ,BaumhofP,Fotin-MleczekM,SchlakeT.2015.Sequence-engineeredmRNAwithoutchemicalnucleosidemodificationsenablesaneffectiveproteintherapyinlargeanimals.MolTher23:1456–1464.doi:10.1038/mt.2015.103 CrossRefMedlineGoogleScholar ↵ TrepotecZ,AnejaM,GeigerJ,HasenpuschG,PlankC,RudolphC.2018.MaximizingthetranslationalyieldofmRNAtherapeuticsbyminimizing5′-UTRs.TissueEngPartA25:69–79.doi:10.1089/ten.TEA.2017.0485 CrossRefGoogleScholar ↵ VallazzaB,PetriS,PoleganovMA,EberleF,KuhnAN,SahinU.2015.RecombinantmessengerRNAtechnologyanditsapplicationincancerimmunotherapy,transcriptreplacementtherapies,pluripotent stemcellinduction,andbeyond.WileyInterdiscipRevRNA6:471–499.doi:10.1002/wrna.1288 CrossRefGoogleScholar ↵ VoetD,VoetJG.2011.Biochemistry.4thed.JohnWiley&Sons,NewYork. GoogleScholar ↵ WangZ,DayN,TrifillisP,KiledjianM.1999.AnmRNAstabilitycomplexfunctionswithpoly(A)-bindingproteintostabilizemRNAinvitro.MolCellBiol19:4552–4560.doi:10.1128/MCB.19.7.4552 Abstract/FREEFullText ↵ WeissmanD.2015.mRNAtranscripttherapy.ExpertRevVaccines14:265–281.doi:10.1586/14760584.2015.973859 CrossRefGoogleScholar ↵ WellsSE,HillnerPE,ValeRD,SachsAB.1998.CircularizationofmRNAbyeukaryotictranslationinitiationfactors.MolCell2:135–140.doi:10.1016/S1097-2765(00)80122-7 CrossRefMedlineWebofScienceGoogleScholar ↵ WilliamsAS,MarzluffWF.1995.Thesequenceofthestemandflankingsequencesatthe3′endofhistonemRNAarecriticaldeterminantsforthebindingof thestem-loopbindingprotein.NucleicAcidsRes23:654–662.doi:10.1093/nar/23.4.654 CrossRefMedlineWebofScienceGoogleScholar ↵ WolffJ,MaloneR,WilliamsP,ChongW,AcsadiG,JaniA,FelgnerP.1990.Directgenetransferintomousemuscleinvivo.Science247:1465–1468.doi:10.1126/science.1690918 Abstract/FREEFullText ↵ ZanierK,LuytenI,CrombieC,MullerB,SchümperliD,LingeJP,NilgesM,SattlerM.2002.StructureofthehistonemRNAhairpinrequiredforcellcycleregulationofhistonegeneexpression.RNA8:29–46.doi:10.1017/S1355838202014061 Abstract ↵ ZiemniakM,StrenkowskaM,KowalskaJ,JemielityJ.2013.PotentialtherapeuticapplicationsofRNAcapanalogs.FutureMedChem5:1141–1172.doi:10.4155/fmc.13.96 CrossRefMedlineWebofScienceGoogleScholar CiteULike Delicious Digg Facebook Reddit Twitter What'sthis? «Previous|NextArticle» TableofContents ThisArticle PublishedinAdvance January15,2019, doi: 10.1261/rna.069286.118 RNA 2019. 25: 507-518 ©2019Trepotecetal.;PublishedbyColdSpringHarborLaboratoryPressfortheRNASociety AbstractFree »FullTextFree FullText(PDF)Free AllVersionsofthisArticle: rna.069286.118v1 25/4/507mostrecent ArticleCategory METHOD Services Alertmewhenthisarticleiscited Alertmeifacorrectionisposted Similararticlesinthisjournal SimilararticlesinWebofScience SimilararticlesinWebofScience ArticleMetrics SimilararticlesinPubMed Downloadtocitationmanager Permissions CitingArticles Loadcitingarticleinformation CitingarticlesviaWebofScience CitingarticlesviaGoogleScholar GoogleScholar ArticlesbyTrepotec,Z. ArticlesbyRudolph,C. Searchforrelatedcontent PubMed/NCBI PubMedcitation ArticlesbyTrepotec,Z. ArticlesbyRudolph,C. Share CiteULike Delicious Digg Facebook Reddit Twitter What'sthis? NavigateThisArticle Top Abstract INTRODUCTION RESULTSANDDISCUSSION MATERIALSANDMETHODS ACKNOWLEDGMENTS Footnotes REFERENCES CurrentIssue September2022,28(9) FromtheCover StructureofthedenguevirusRNApromoter AdualrolefortheRNAhelicaseDHX34inNMDandpre-mRNAsplicing High-throughputimagingofmRNAatthesingle-celllevel Alertmetonewissuesof RNA AdvanceOnlineArticles SubmitaManuscript EditorialBoard AuthorInformation E-mailAlerts&RSSFeeds RecommendtoYourLibrary JobOpportunities MolecularCloningTheNewEdition BuyNowandSave30% Paperbackonly(limitedtimeoffer) MolecularCloning:ALaboratoryManual(FourthEdition)   Home About Submit Subscribe Advertise AuthorInfo Archive Contact Help Copyright©2022bytheRNASociety PrintISSN: 1355-8382 OnlineISSN: 1469-9001



請為這篇文章評分?