Gene Editing and Crop Improvement Using CRISPR-Cas9 ...

文章推薦指數: 80 %
投票人數:10人

CRISPR/Cas9 System DownloadArticle DownloadPDF ReadCube EPUB XML(NLM) totalviews ViewArticleImpact SHAREON ManojK.Sharma SchoolofBiotechnology,JawaharlalNehruUniversity,India KaijunZhao InstituteofCropSciences,ChineseAcademyofAgriculturalSciences,China ElenaKhlestkina InstituteofCytologyandGenetics,RussianAcademyofSciences(RAS),Russia XiaoouDong UniversityofCalifornia,Davis,UnitedStates Theeditorandreviewer'saffiliationsarethelatestprovidedontheirLoopresearchprofilesandmaynotreflecttheirsituationatthetimeofreview. Abstract Introduction CRISPR/Cas9System CRISPRSpecificationsinPlants TargetedGenomeModificationinCropPlants ProspectiveApplicationsofCRISPRSystem CRISPR/Cas9OpportunitiesandConcerns VisionaryNotionsofthisTechnology AuthorContributions Funding ConflictofInterestStatement Acknowledgment References Checkforupdates Peoplealsolookedat REVIEWarticle Front.PlantSci.,08November2017Sec.PlantBiotechnology https://doi.org/10.3389/fpls.2017.01932 GeneEditingandCropImprovementUsingCRISPR-Cas9System LeenaAroraandAlkaNarula* DepartmentofBiotechnology,SchoolofChemicalandLifeSciences,JamiaHamdardUniversity,NewDelhi,India AdvancementsinGenomeeditingtechnologieshaverevolutionizedthefieldsoffunctionalgenomicsandcropimprovement.CRISPR/Cas9(clusteredregularlyinterspacedshortpalindromicrepeat)-Cas9isamultipurposetechnologyforgeneticengineeringthatreliesonthecomplementarityoftheguideRNA(gRNA)toaspecificsequenceandtheCas9endonucleaseactivity.Ithasbroadenedtheagriculturalresearcharea,bringinginnewopportunitiestodevelopnovelplantvarietieswithdeletionofdetrimentaltraitsoradditionofsignificantcharacters.ThisRNAguidedgenomeeditingtechnologyisturningouttobeagroundbreakinginnovationindistinctbranchesofplantbiology.CRISPRtechnologyisconstantlyadvancingincludingoptionsforvariousgeneticmanipulationslikegeneratingknockouts;makingprecisemodifications,multiplexgenomeengineering,andactivationandrepressionoftargetgenes.ThereviewhighlightstheprogressionthroughouttheCRISPRlegacy.WehavestudiedtherapidevolutionofCRISPR/Cas9toolswithmyriadfunctionalities,capabilities,andspecializedapplications.Amongvarieddiligences,plantnutritionalimprovement,enhancementofplantdiseaseresistanceandproductionofdroughttolerantplantsarereviewed.ThereviewalsoincludessomeinformationontraditionaldeliverymethodsofCas9-gRNAcomplexesintoplantcellsandincorporatestheadventofCRISPRribonucleoproteins(RNPs)thatcameupasasolutiontovariouslimitationsthatprevailedwithplasmid-basedCRISPRsystem. Introduction Geneticdiversityisakeysourcefortraitimprovementinplants.Creatingvariationsinthegenepoolistheforemostrequirementfordevelopingnovelplantvarieties.Oncethedesiredalterationsareachieved,transgenescanbecrossedoutfromtheimprovedvariety.Cropimprovementhasbeendoneforyearsviatraditionalplantbreedingtechniquesorthroughvariousphysical,chemical(e.g.,gammaradiation,ethylmethanesulfonate)andbiologicalmethods(e.g.,T-DNA,transposoninsertion)leadingtopointmutations,deletions,rearrangements,andgeneduplications.Theadventofsite-specificnucleases(SSNs)highlightedtheimportanceofsitedirectedmutagenesisoverrandommutagenesis(Osakabeetal.,2010;Sikoraetal.,2011).Randommutagenesishasalsoitsownlistofshortcomingstoo.Itproducesmultipleundesirablerearrangementsandmutations,whichareexpensiveandverycomplextoscreen.GeneeditingusesengineeredSSNstodelete,insertorreplaceaDNAsequence.Developmentoftheengineeredendonucleases/mega-nucleases,zincfingernucleases(ZFNs),transcriptionactivator-likeeffectornucleases(TALENs)andtypeIIclusteredregularlyinterspacedshortpalindromicrepeat(CRISPR)/CRISPR-associatedprotein9(Cas9)pavedthewayforsinglenucleotideexcisionmechanismforcropimprovement(Paboetal.,2001;Bochetal.,2009;MoscouandBogdanove,2009)(Figure1).Thesegenome-editingtechnologiesuseprogrammablenucleasestoincreasethespecificityofthetargetlocus. FIGURE1 FIGURE1.Variousgenome-editingtools.(A)Zinc-fingernucleases(ZFNs)actasdimer.EachmonomerconsistsofaDNAbindingdomainandanucleasedomain.EachDNAbindingdomainconsistsofanarrayof3–6zincfingerrepeatswhichrecognizes9–18nucleotides.NucleasedomainconsistsoftypeIIrestrictionendonucleaseFok1.(B)Transcriptionactivator-likenucleases(TALENs):thesearedimericenzymessimilartoZFNs.EachsubunitconsistsofDNAbindingdomain(highlyconserved33–34aminoacidsequencespecificforeachnucleotide)andFok1nucleasedomain.(C)CRISPR/Cas9:Cas9endonucleaseisguidedbysgRNA(singleguideRNA:crRNAandtracrRNA)fortargetspecificcleavage.20nucleotiderecognitionsiteispresentupstreamofprotospaceradjacentmotif(PAM). Genomeeditingmodifiesaspecificgenomeinpreciseandpredictablemanner.Therecouldbevarietiesofgenes,whichcouldbealteredindifferentcelltypesandorganismswiththeaidofnucleasesthatoffertargetedalterations.ZFNsisoneoftheoldestgeneeditingtechnologies,developedinthe1990sandownedbySangamoBioSciences.ZFNsarepremeditatedrestrictionenzymeshavingsequencespecificDNAbindingzincfingermotifsandnon-specificcleavagedomainofFok1endonuclease.Anarrayof4–6bindingmodulescombinestoformasinglezincfingerunit.Eachmodulerecognizesacodon(Paboetal.,2001).ApairofZFNstogetheridentifiesaunique18–24bpDNAsequenceanddoublestrandedbreaks(DSBs)aremadebyFok1dimer.FokInucleasesarenaturallyoccurringtypeIISrestrictionenzymesthatintroducesinglestrandedbreaksinadoublehelicalDNA.HenceFokIfunctionsasadimer,witheachcatalyticmonomer(nickase)cleavingasingleDNAstrandtocreateastaggeredDSBwithoverhangs(Paboetal.,2001).ZFNshavebeensuccessfullyemployedingenomemodificationofvariousplantsincludingtobacco,maize,soybean,etc.(Curtinetal.,2011;Ainleyetal.,2013;Baltesetal.,2014).Itwastakenbackduetosomedrawbackssuchastime-consumingandexpensiveconstructionoftargetenzymes,lowspecificityandhighoff-targetmutationsthateventuallymadewayforthenewtechnology.TALENsturnedouttobeasubstitutetoZFNsandwereidentifiedasrestrictionenzymesthatcouldbemanipulatedforcuttingspecificDNAsequences.Traditionally,TALENswereconsideredaslongsegmentsoftranscriptionactivator-likeeffector(TALE)sequencesthatoccurrednaturallyandjoinedtheFokldomainwithcarboxylic-terminalendofmanipulatedTALErepeatarrays(Christianetal.,2010).TALENscontainacustomizableDNA-bindingdomainwhichisfusedwithnon-specificFoklnucleasedomain(Christianetal.,2010).TALENscomparedtoZFNs,involvetheinteractionofindividualnucleotiderepeatsofthetargetsiteandaminoacidsequencesofTALeffectorproteins.TheycangenerateoverhangsbyemployingFoklnucleasedomaintopersuadesite-specificDNAcleavage.Ithasbeenwidelyusedtogeneratenon-homologousmutationswithhigherefficienciesindiverseorganisms(JoungandSander,2012). TheemergenceofCRISPRtechnologysupersedesZFNsandTALENsandusedwidelyasanovelapproachfrom“methodsoftheyear”in2011to“breakthroughoftheyear”in2015fortheircaptivatedgenomeediting.Thisprokaryoticsystemispromptlyacceptedforgenomeeditingineukaryotichostcells(Jineketal.,2012;Nakayamaetal.,2013).CRISPRhasanaddedadvantageofgeneknockoutoverRNAi,whichisawell-knowntechniqueforgeneknockdown.CRISPRtargetstheendogenousgenesthatareimpossibletospecificallytargetusingRNAitechnologywithmoreprecisionandsimplicity.RNAigeneregulationisgovernedbytheendogenousmicroRNAs(miRNAs).AnydisplacementofthesemiRNAsfromtheexogenousmiRNAscanleadtohypomorphicmutationsandoff-targetphenotypes(Khanetal.,2009).CRISPR/Cas9targetsspecificgenomiclociwiththehelpof∼100nucleotide(nt)guideRNA(gRNA)sequence.sgRNAbindstotheprotospaceradjacentmotif(PAM)ontargetedDNAviaWatsonandCrickbasepairingthrough17–20ntatthegRNA5′-endandguideCas9forspecificcleavage(Tsaietal.,2015).Cas9stimulatestheDNArepairmechanismbyintroducingDSBsinthetargetDNA.Repairmechanisminvolveserrorpronenon-homologousendjoining(NHEJ)orhomologousrecombination(HR)toproducegenomicalterations,geneknockoutsandgeneinsertions(Figure2).NHEJbyfaristhemostcommonDSBrepairmechanisminsomaticplantcells(Puchta,2005).RandominsertionsordeletionsbyNHEJinthecodingregionleadtoframeshiftmutations,hencecreatinggeneknockouts.CRISPRtechnologyholdspotentialforloss-of-function,gain-of-function,andgeneexpressionanalysis.CRISPRhasversatileapplicationsinplantbiologyandisreadilyappliedtoproducehighqualityagriculturallysustainableproducts(Table1).TherearemanyplantswhichareintheprocessofgettingalteredthroughCRISPR/Cas9.TheCRISPReditedtomatoeswillbeexpectedtohaveenhancedflavor,sugarcontentandaromaascomparedtomoderncommercialvarieties;cornismaderesistanttodroughtwithhighyieldperhectare;wheatiseditedagainstpowderymildewdisease,andmushroomsaretargetedtoreducethemelanincontent(Wangetal.,2014;Waltz,2016;Shietal.,2017;Tiemanetal.,2017). FIGURE2 FIGURE2.Genomeeditingwithsite-specificnucleases(SSNs).Thedoublestrandedbreaks(DSBs)introducedbyCRISPR/Cas9complexcanberepairedbynon-homologousendjoining(NHEJ)andhomologousrecombination(HR).(A)NHEJrepaircanproduceheterozygousmutations,biallelicmutations(twodifferentmutationsateachchromosome)andhomozygousmutations(twoindependentidenticalmutations)leadingtogeneinsertionorgenedeletion.(B)InthepresenceofdonorDNAdigestedwiththesameendonucleaseleavingbehindsimilaroverhangs,HRcanbeachievedleadingtogenemodificationandinsertion. TABLE1 TABLE1.ListoftargetedgenesviaCRISPR/Cas9systemindifferentplantspecies. CRISPR/Cas9System CRISPRprogressintoday’sworldasgenomeeditingtoolcanbetracedbacktoitsorigininthelate1980s(Ishinoetal.,1987)andadecadeofextensiveexperimentationsince2005(Figure3).CRISPR/Cas9microbialadaptiveimmunesystemanditsprogresstilldateistheoutcomeoftheworkofnumerousresearchersaroundtheglobe.Aseriesofcomprehensivereviews(BortesiandFischer,2015;AmitaiandSorek,2016;Puchta,2016)givesthedetailedinformationofeachaspectofCRISPR/Castechnology. FIGURE3 FIGURE3.KeydiscoveriesandadvancesinCRISPR/Cas9technology. DecipheringtheroleofCRISPR/Cassysteminbacteriaandarchaeaelucidatedthepowerofthissystemasagenome-editingtool.AseriesofexperimentsinvolvingbioinformatictoolsunveiledvariousCRISPR/Cascomponentsandtheirfunctioninprovidingadaptiveimmunitytobacterialcells.ACRISPRlocusconsistsofclustersofCRISPR-associated(Cas)genesandCRISPRarrayswhereallimmunologicalmemoriesareengraved(Barrangouetal.,2007).CRISPRarrayisagenomiclocushavingseriesof21–40bprepeatsequences(directrepeats)interspacedby25–40bpvariablesequences(spacers)(Jansenetal.,2002;Tangetal.,2002).In2005,threeindependentresearchgroups(Bolotinetal.,2005;Mojicaetal.,2005;Pourceletal.,2005)hypothesizedtheroleofspacerelementsastracesofpastinvasionsofforeignDNAthatprovideimmunityagainstphageinfection.Theyalsonotedthatspacersshareacommonendsequence,nowknownasPAM.Barrangouetal.(2007)experimentallydemonstratedtheinvolvementofCRISPRarraysinresistancetobacteriophagesinassociationwithCasgenes.Ateveryinfection,newphageDNAgetsincorporatedintotheCRISPRarraybuildingpotentialtofighttheupcominginfection.StudiesfromBrounsetal.(2008)unveilthetranscriptionofphagespacersequencesintosmallRNAs(crRNAs)thatguideCasproteinstothetargetDNA.ThemechanismofinterferencebasedonRNA-mediatedDNAtargetingandtheroleofCas9inintroducingDSBsatapreciseposition,threenucleotidesupstreamofPAMwasalsodemonstrated(MarraffiniandSontheimer,2008;Garneauetal.,2010).Furtheratrans-activatingCRISPRRNA(tracrRNA)formsaduplexwithcrRNAandguidesCas9toitstarget(Deltchevaetal.,2011).FusionofthecrRNAandtracrRNAtoformasingle,syntheticguideRNAfurthersimplifiedthesystem(Jineketal.,2012).Finally,Congetal.(2013)reportedtheabilityofCas9tofacilitatehomologydirectedrepairwithminimummutagenicactivity. ClassificationofCRISPR/Cas9System ThefirstattempttoclassifyCRISPR/CassystemwasdonebyHaftetal.(2005).Hedefined45CRISPR-associated(Cas)proteinfamiliesthatarecategorizedintocoreproteins(Cas1,Cas2,Cas3,Cas4,Cas5,Cas6),8CRISPR/CassubtypesandRAMP(repairassociatedmysteriousprotein)moduleinprokaryoticgenomes.Makarovaetal.(2011)classifiedCRISPR/Cassystemsintothreetypes:typeI,typeII,andtypeIIIdependingonthepresenceofsignatureCas3,Cas9andCas10proteins,respectively(Table2).Thissystemwasdividedinto10subtypesdependingonthepresenceofadditionalsignatureproteins.Thisthree-typeclassificationsystemisfurthermodifiedintotwoclass-fivetypeclassificationsystemsdependingonthetypeofsignatureproteinsandCRISPRloci(Makarovaetal.,2015).MajordifferencesbetweenCRISPRclassesarebasedonthecompositionofcrRNPcomplexes.Class1CRISPRshavemultiplesubuniteffectorcomplexeswhileclass2CRISPRsconcentratesmostoftheirfunctionswithsingleproteineffectors.Class1CRISPRsystem,forexample,havedifferentnucleasesforpre-crRNAprocessing,spacersequenceloading,andtargetedcleavageprocessing.Inclass2,asingleproteinperformsallofthesefunctions.TypeIVandtypeVbelongstoclassIandclassIIsystemsrespectively.TwosubtypesoftypeVsystemandVItypeisalsorecognized,elaboratingtheclassificationtotwo-class–six-type–19-subtypesystem(Shmakovetal.,2015;Table2).Cas1andCas2genesareubiquitousinallCRISPR/Castypes(Makarovaetal.,2011). TABLE2 TABLE2.ClassificationofCRISPR/Cas9system. CRISPR-Cpf1(ClassII,TypeVCRISPRfromPrevoltellaandFrancisella1)isanadvancedtoolthatusesasingleCpf1proteinforcrRNAprocessing,targetsiterecognition,andDNAcleavage.Cpf1isfunctionallyconservedtoCas9proteinbutdifferssubstantiallyinmanyaspects.Thedifferencesareasfollows:itisaribonucleasethatprocessesprecursorcrRNA;itrecognizesathyminerich(like5′-TTTN-3′)PAMsites(Zetscheetal.,2015a).PAMsequenceislocatedupstreamoftheprotospacersequenceandtracrRNAisnotrequiredforguidingCas9tothetargetsite.ThemostimportantcharacteristicofCpf1isthegenerationof4bpoverhangsincontracttobluntendsproducedbyCas9(Zetscheetal.,2015a).Thesestickyendswouldprovidemoreefficientgenomicinsertionsduetosequencecomplementarityintoagenome.AmongseveralproteinsintheCpf1family,LbCpf1fromLachnospiraceaebacteriumND2006andAsCpf1fromAcidaminococcussp.BV3L6actmoreeffectivelyinhumancellscomparedwithotherorthologs(Kimetal.,2016).Class2typeVIischaracterizedbyaneffectorproteinC2c2(Class2,candidate2).C2c2containstwonucleotidebinding(HEPN)conserveddomains,whichlackshomologytoanyknownDNAnuclease(Abudayyehetal.,2016).HEPNdomainsfunctionasRNases,henceitisvisualizedasanewRNAtargetingtoolguidedbyasinglecrRNAwhichcanbeengineeredtocleavessRNAcarryingcomplementaryprotospacers.Hence,C2c2doesnottargetDNA(Abudayyehetal.,2016).C2c2issimilartotypeIII-AandIII-BsystemsinhavingHEPNdomainsthatarebiochemicallycharacterizedasssRNAspecificendoribonucleasesbutthereisasignificantlineofdifferencebetweenthesetwotypes.Cas10-CsmintypeIIIAandCsxintypeIIIBhavelesstargetspecificityandhavetodimerizetoformactivesites.C2c2,incontrast,containstwoHEPNdomainsandfunctionasmonomericendoribonuclease(Abudayyehetal.,2016).dCas9analogsofC2c2,dC2c2canbeproducedbyalaninesubstitutionofanyofthefourpredictedHEPNdomain.FurtherexaminationisrequiredtoclarifythemechanismoftheC2c2systemandtheclassofpathogensagainstwhichitcanprotectbacteria.Currently,typeVIsystemisfoundinCarnobacteriumgallinarum,Leptotrichiabuccalis,L.shahii,L.wadei,Listerianewyorkensis,L.seeligeri,L.weihenstephanensis,Paludibacterpropionicigenes,andRhodobactercapsulatus(ChoiandLee,2016). CRISPR/Cas9Mechanism TheadaptiveimmunityofCRISPR/Cas9systemconsistsofthreephases:adaptation,expression,andinterference(Figure4).AdaptationinvolvestheinvadingDNAfromvirusorplasmidsthatarecleavedintosmallfragmentsandincorporatedintoCRISPRlocus.CRISPRlociaretranscribedandprocessedtogeneratesmallRNA(crRNA),whichguidetheeffectorendonucleasestotargettheviralmaterialbybasecomplementarity(Barrangouetal.,2007;Yosefetal.,2012).DNAinterferenceinTypeIICRISPR/CassystemrequiresasingleCas9protein(Haleetal.,2009;Zetscheetal.,2015b).Cas9isahugeproteinpossessingmultipledomains(RuvCdomainattheaminoterminusandtheHNHnucleasedomainpositionedinmiddle)andtwosmallRNAsnamelycrRNAandtracrRNA.Cas9assistsadaptation,participatesinpre-crRNAprocessingtocrRNAandintroducetargetedDSBsguidedbytracrRNAanddoublestrandedRNAspecificRNaseIII(Jacksonetal.,2014;Mulepatietal.,2014).AscomparedtotypeIICRISPR,theuniquefeaturesoftypeIIICRISPRarethecleavageofbothDNAandRNA,anditsassociationwiththecleavageproteinCas10.Thecleavageisatranscription-dependentDNAsequencemodificationthatalsocontainsatranscriptionallyactivepromoter(Samaietal.,2015).Cas10systemenablesbacteriatoacquireviralspacerelementsenablingatypeofresistanceagainstforeignDNAunderspecialconditions.Thisresistancetoforeign/viralDNApreventsactivationofthelyticpathway,whichisdetrimentaltothehostcell.Thesesequencescouldalsoalterthephysicalcharacteristicsofthecell,potentiallyprovidingasurvivaladvantageforthehostcell(Samaietal.,2015). FIGURE4 FIGURE4.MechanismofCRISPR/Cas9action:intheacquisitionphaseforeignDNAgetsincorporatedintotheCRISPRlociofbacterialgenome.CRISPRlociisthentranscribedintoprimarytranscriptandprocessedintocrRNAwiththehelpoftracrRNAduringcrRNAbiogenesis.Duringinterference,Cas9endonucleasecomplexedwithacrRNAandcleavesforeignDNAnearPAMregion. MultiplexgenomeengineeringusingmultipleguideRNAstotargetvariousgenomicsitessimultaneouslywasalsodemonstrated.CRISPRwasfirstappliedinplantsinAugust2013(Fengetal.,2013;Lietal.,2013;XieandYang,2013).Fengetal.(2013)targetedvariousendogenousgenesandtransgenesbyprotoplasttransfection,agroinfiltrationandgeneratedstabletransgenicplantsbybothNHEJandHRmechanisms.VariousgenesleadingtophenotypicvariationsweretargetedlikeBrassinosteroidInsensitive1(BRI1),Jasmonate-Zim-DomainProtein1(JAZ1)andGibberellicacidinsensitive(GAI)inArabidopsisandRiceOutermostCell-specificgene5(ROC5),StromalProcessingPeptidase(SPP),andYoungSeedlingAlbino(YSA)inriceandobtainedpositiveresults.Similarly,XieandYang(2013)introducedthreeguideRNAsatdistinctricegenomiclociandanalyzedthemutationefficiencyof3–8%.Offtargetmutationswerealsonoticedbutwithminimumgenomeeditingefficiencythanthematchedsite. Studiesonmaize(Liangetal.,2014),wheat(Wangetal.,2014),andsorghum(Jiangetal.,2013)providedanexcellentfoundationfortheuseofCRISPRingeneediting.Theseinvestigationspostulatedthefirstcomprehensivedataonparameterssuchasmutationefficiency,cleavagespecificity,largechromosomaldeletionsandresolutionoflocusstructure.Jiangetal.(2013)alsodemonstratedtheexpressionofgRNAsunderthecontrolofmultiplepromoters.Fauseretal.(2014)emphasizedtheuseofbothCRISPR/CasbasednucleasesandnickaseswiththeirstudiesconductedonArabidopsisthaliana.NucleasesareefficienttoolsforNHEJmediatedmutagenesisandthecombinedactionoftwonickasescanenhancerecombinationbetweentandemlyarrangeddirectrepeats,geneconversionguidedbyinvertedrepeatsandcanregulatemechanismsinvolvingHR(Fauseretal.,2014).SinglechimericgRNAarefoundtobemoreefficientthanindividualcrRNAandtracrRNAcomponents(Miaoetal.,2013;Zhouetal.,2014).Interestingly,fourindependentgroups(Shanetal.,2013;Brooksetal.,2014;Zhangetal.,2014;Zhouetal.,2014)havedemonstratedtheintroductionofbiallelicorhomozygousmutationsinT1generationofriceandtomatoindicatingthehighefficiencyofthissystem.Thegeneticchangesaresegregatednormallyinsubsequentgenerationswithoutfurthermodifications(Zhouetal.,2014).SomeexamplesoftheCRISPR/Cas9applicationsinplantsarecitedinTable1. CRISPR/Cas9systemiscontinuouslybeingupgradedforbetterefficiencyandspecificityofgenetargeting.TheneedforrepurposingCRISPR/Cas9systemtoaltereukaryoticgenomehasnecessitatedtheadditionofnuclearlocalizationsignalsatoneorbothendsoftheprotein.TheintroductionoforthogonalCRISPR/Cas9systemshasbroadenedtheapplicationofthistechnologymanifold.TheseorthologsincludeRNAguidedendonucleasesfromStreptococcusthermophilus(St),Neisseriameningitidis(Nm),Campylobacterjejuni(Cj),andStaphytococcusaureus(Sa).EachorthogonalCas9systemhasuniquespecificationsincludingvariationsinCas9proteins,PAMsitesandgRNAscaffoldsfortargetrecognition(Table3).Houetal.(2013)demonstratedefficienttargetingofendogenousgenesinhumanpluripotentstemcellsviaNmCas9.TheyarethepioneersinthedevelopmentofNmCas9thatuses24-nucleotide(nt)protospacertotargetDNAover20ntprotospacerrequirementsofSpCas9andStCas9.ExtendedPAMsequence(5′-NNNNGATT-3′)ascomparedtoNGGsequencemayfurtherenhancethespecificity. TABLE3 TABLE3.Cas9variantswiththeiroriginandspecifications. CRISPRSpecificationsinPlants EfficientCRISPR/Cas9genomeseditinginplantsrequiresuitablevectorsystem(codonoptimizedCas9geneandpromotersforCas9andsgRNA),efficienttargetsitesandtransformationmethodusedinappropriateplantspecies.CRISPReditingrequiresthedeliveryandexpressionofsingleguideRNA(sgRNA)andcas9proteininthetargetcell.Specificexpressionvectorsaredesignedtoachievethisgoal.sgRNAisgenerallyregulatedbytissuespecificRNApolymeraseIIIpromoterssuchasAtU6,TaU6etc.thatdrivestheexpressionofsmallRNAsintheirrespectivespecies.Similarly,Cas9isplaceddownstreamofRNApolymeraseIIpromoterslikeubiquitinpromotersthatguidetheexpressionoflongerRNAs.Cas9isgenerallytaggedwithnuclearlocalizationsequence(NLS)totargetnuclearDNA.Thechoiceofthevectorslargelydependsuponthetypeoftheexpressionsystemtobeworkedon,typeofrestrictionsitespresenttoinsertsgRNAandthetypeofCas9system.BothsgRNAandCas9canbeco-expressedinasingleplasmidex.pFGC-pcoCas9,pRGEB32,pHSE401.Differenttypesofplasmidscanbestudiedfromhttps://www.addgene.org/crispr/plant/.TheuseoftheseplasmidsislimiteddependinguponthetypeofCas9(cut,nick,activate,interfere)present(Table4). TABLE4 TABLE4.DifferentplasmidswithspecificCas9activity. IndependentsgRNAplasmidsarealsodesignedwhereCas9isnotco-expressedbutcanbepairedalongenablingusageofthewidevarietyofCas9types.pICSL01009::AtU6pandpICH86966::AtU6p::sgRNA_PDSwhichencodesanArabidopsisU6promoterandexpressessgRNAtargetingPDSinNicotianabenthamiana.ThechoiceoftheoptimalpromoterstodrivetheexpressionofsgRNAorCas9andcodonoptimizedversionofCas9isimportantforefficientgenomeediting.MostoftheworkineukaryoticcellsisdoneusingcodonoptimizedversionsofSpCas9.Resultshavebeenobtainedusinghumancodonoptimized(Lietal.,2013;Miaoetal.,2013)orplantcodonoptimizedversionsofCas9(Fengetal.,2013;Nekrasovetal.,2013;XieandYang,2013).Themutationsinducedcanbeheterozygous,biallelic(twodistinctallelicmutations),homozygousorrarelychimeric.AnumberofreportsconfirmedthestableinheritanceofCRISPR/Cas9inducedmutationsinmodelandcropplants.EfficientCRISPR/Cas9genomeeditingandinheritanceofmodifiedgenesintheT3andT2generationswasreportedforthefirsttimeinArabidopsis(Jiangetal.,2014).Achangeinnon-functionalGFPgenewasobservedinT1generation.AllGFP-positivetransgenicplantswereidentifiedwithmutagenizedGFPgenes.Outof42transgenicsdeveloped,50%haveinheritedasingleT-DNAinsert. ThegeneralmethodologyforimplementingtargetedmutagenesisusingCRISPR/Cas9technologyisoutlinedinFigure5.ItstartswiththeselectionofspecifictargetsitehavingashortPAMsequenceat3′end.Targetsiteshouldbeselectedconsideringminimumornooff-targeteffects(preventingcutsatunintendedsitesinthegenome).ManybioinformaticstoolshelpindesigningsgRNAwithhighspecificityanddetectionofoff-targetssuchasCOSMID(CRISPROff-targetSiteswithMismatches,Insertions,andDeletions).Off-targetsaremoreprevalentinbacterialandculturedmammaliancellsthaninplantcells.Manystudieshaveshownthepotentialoff-targetsofcas9suchas,insoybean,theoff-targetfrequencywasfoundtobe13%(Jacobsetal.,2015).Nodetectableoff-targetsarefoundinA.thaliana,wheat,riceandsweetorange.Cas9nickasehasalsoemergedasanalternativetoreduceofftargeteffects.NickaseisguidedbythesgRNAattwoadjacentpositionsatthetargetsiteproducingasinglestrandedbreakoneachofthetwoDNAstrands. FIGURE5 FIGURE5.SimplifiedflowchartrepresentingCRISPR/Cas9mediatedplantgenomeediting.Aftertheselectionofthetargetsite,sgRNAsaredesignedusingvariousbioinformaticsoftwaresandpackedintospecificvectorsalongwithcodonoptimizedCas9.Afterdeliveryintoplantcells,putativetransformantscanbescreenedbymultipleassaysandusedforfurtheranalysis. CRISPR-PLANTisanewlydesignedwebportalsupportedbyPennStateandArizonaGenomicsInstitute(AGI)establishedtohelpresearcherstousetheCRISPR-Cas9systemforgenomeediting.ItestimatesthehighlyspecificsgRNAbyavoidingoff-targetsequences(Xieetal.,2014).Afterthetargetsiteconfirmation,targetspecificoligonucleotides(20nt)aredesignedwhichfurtherfuseswithtracrRNAsequencetoformsgRNA.sgRNAisfurtherplacedinavectoreitheralongwithCas9sequence(abinaryvector)orindividuallyunderasuitablepromoterforanoptimalexpression.Theconstructsarethentransformedusingasuitablemethod.Thedeliverysystemsvarybasedonplantspecies,researchpurpose,andrequirements.FgRNA-Cas9mediatededitingcanbedetectedbyarestrictionenzymedigestionsuppressedPCR(RE-PCR)method,whichinvestigatestheNHEJ-introducedmutations(XieandYang,2013).RE-qPCRcanalsobeperformedformoreaccurateestimationofgenome-editingefficiency.Finally,wholegenomesequencingisdonetoreduceoff-targetmodifications. TargetedGenomeModificationinCropPlants Overtheyearsthebiotic(bacteria,fungi,insects,andviruses)andabiotic(salinity,drought,flooding,heavymetaltoxicity,hightemperature)stresseshaveadverselyaffectedcropplantation.Oneofthecurrentresearchesinplantbiologyfocusesongeneratingcropstotolerateharshagroclimaticconditionsandtomeettheneedsoftheever-growinghumanrace. GenomeModificationforNutritionImprovement CRISPR/Cas9systemcangeneratestableandheritablemutationswithoutaffectingtheexistingvaluabletraits.Thisresultsinthedevelopmentofhomozygousmodifiedtransgenefreeplantsinonlyonegenerationandit’sstabletransmissiontosuccessivegenerations(Fengetal.,2014;Panetal.,2016).Cas9continuedtobeabettertoolwithrelativelyhighcleavageefficiencywhencomparedtoTALENsandZFNs(Gajetal.,2013;Johnsonetal.,2015).ResearchesdoneonvariouscropssincetheadventofCRISPRtechnologyintheplantworldishighlightedinTable1.Classicworksarebeingdoneforproducingacrylamidefreepotatoes(Haltermanetal.,2015),non-browningapples,mushroomsandpotatoesbymutatingPolyphenoloxidase(PPO)genes(Haltermanetal.,2015;Nishitanietal.,2016;Waltz,2016)andlowphyticacidinmaize(Liangetal.,2014). Wangetal.(2014)pioneeredtheworkoftargetedgenomeeditinginsweetorangeusingCas9/sgRNA.Geneticimprovementofcitrusislimitedduetoitsslowgrowth,pollenincompatibility,polyembryony,andparthenocarpy.Xcc(Xanthomonascitrisubsp.citri)-facilitatedagroinfiltrationwasemployedtodeliverCas9andCsPDSgenespecificsgRNAintosweetorange.DNAsequencingconfirmedthemutatedCsPDSgeneatthetargetsitewithamutationrateof3.2to3.9%.Nooff-targetmutagenesiswasreported.Lawrensonetal.(2015)targetedmulticopygenesinHordeumvulgareinvestigatingtheuseandtargetspecificityrequirementsofCas9editing.HvPM19geneencodinganABA-inducibleplasmamembraneproteinwastargetedtostudythecharacteristicsofdormancy.T0werephenotypicallyidentifiedwithexpecteddwarfphenotypeassociatedwithaknockoutofthetargetgene.Liangetal.(2014)discussedthepresenceofantinutritionalcompoundPhyticacid(PA),inositol1,2,3,4,5,6-hexakisphosphateinmaize.PAispoorlydigestedinhumansandpossesathreattotheenvironment,thus,PAcontentofmaizeseedswasreducedbydesigningtwogRNAstargetingtheZmIPK(InositolPhosphateKinase)genethatcatalyzesakeystepinPAbiosyntheticpathway. BioticandAbioticStressResistanceviaCRISPR/Cas9 MultiplediseaseresistanceplantshavebeenobtainedusingCRISPR/Cas9technology(Table5).SomehighlightsinvolvetheresistanceagainstriceblastdiseasebytargetingOsERF922geneinrice(Wangetal.,2016).TransgenefreemutantlinesfromT1andT2generationswereselectedbysegregationandfurtherexamined.Transgeniclinesshowedasignificantreductionblastlesionsformedduetopathogeninfection.Wangetal.(2014)introducedmutationsusingsite-specificendonucleasesinhomeoallelesencodingMildew-resistancelocus(MLO)proteinsofhexaploidbreadwheat.Pengetal.(2017)targetedcitruscankercausedbyXanthomonascitrisubsp.XccinCitrussinensis.CRISPR/Cas9targetedmodificationofthesusceptibilitygeneLateralorganboundaries1(CsLOB1)promoterenhancesdiseaseresistance.DeletionoftheentireEBEPthA4sequencefrombothCsLOB1allelesconferredthehighestlevelofresistancetoWanjinchengorange.AlltransformedplantsweremorphologicallysimilartowildtypeindicatingthatCsLOB1promotermodificationdoesnotdisruptplantdevelopment.42%ofthemutantplantsharboreddesiredmutationsand23.5%ofthemutantsshowedresistancetocitruscanker.ThestackingupofmultiplenucleasesasonetransgenebyCRISPR/Cas9systemalsoleadstothetargetedcleavageofmultipleinfectionsbyviruses(Iqbaletal.,2016). TABLE5 TABLE5.ListofsomecropsthataremaderesistanttodiseasesviaCRISPR/Cas9system. CRISPRSysteminMetabolicEngineering FurtherapplicationsofCRISPR/Cas9includeextensiveresearchinthefieldofmetabolicengineeringwhereplantcellsaretargetedforproductionofspecificmetabolites.Alagozetal.(2016)manipulatedthebiosynthesisofbenzylisoquinolinealkaloids(BIAs)fornextgenerationmetabolicengineeringinPapaversomniferumbyknockingout3′OMT2geneviaNHEJDNArepairCRISPR/Cas9mechanism.4′OMT2(4′-O-methyltransferase)isaregulatorygeneinvolvedinthebiosynthesisofcodeine,noscapine,papaverine,andmorphineviadifferentBIApathways.Suchstrategiescanbeemployedtoconvertvaluablemedicinalplantsintobiofactoriesformassproductionofspecificmetabolitessimplybyintroducingbreaksinrelatedgenesequencing.Lietal.(2017)targetedditerpenesynthasegene(SmCPS1),involvedintanshinonebiosynthesisinSalviamiltiorrhiza,Chineseherbwell-knownforvasorelaxationandantiarrhythmiceffects.SmCPS1istheentryenzymethatusesGGPP(geranylgeranyldiphosphate)asitssubstrateforgeneratingtanshinones.GGPPalsoactsasaprecursorfortaxolbiosynthesis,therefore;SmCPS1knockout(post-GGPPsynthesisstep)blocksthemetabolicfluxthroughGGPPtotanshinone,switchingGGPPtotaxolsynthesis.AgrobacteriumrhizogenesmediatedtransformationusingCRISPR/Cas9generatedthreehomozygousandeightchimericmutantsfrom26independenttransgenichairyrootlinesofSalvia.Metabolomicsanalysisrevealedzerotanshinoneaccumulationinhomozygousmutantsanddecreasedpercentageinchimericmutants. ProspectiveApplicationsofCRISPRSystem CRISPR/Cas9technologyisadvancingatanunprecedentedpace.MostoftheresearchdonesofarincludegeneknockoutorgenesilencingmechanismsviaNHEJ,whichisnotpreciseandmostprevailingmechanism.Geneknock-inorgenereplacementstrategiesthatfollowtargetedmutagenesisviaHDRevidencedpromisingresultsinmammalianandplantcells.Homologydrivenrepairwasadifficulttaskearlierinplantsbecauseoflowefficiencyandinefficientdeliveryofhomologousdonorsequencesintotransfectedplantcells(PuchtaandFauser,2014;Steinertetal.,2016).Multipleapproachesareusedforefficienthomologydirectedrepairmechanismandsuccessfulresultshavebeenreported(Collonnieretal.,2017;Humanesetal.,2017).Genomicstudiesinwoodyplantsarechallengingbecauseofthelongvegetativeperiods,lowgenetictransformationefficiencyandlimitedmutants.Fanetal.(2015)reportedthedisruptionofsite-specificendogenousphytoenedesaturasegene(PtoPDS)inPopulustomentosaCarr.via.Homoallelicandheteroallelicpdsmutantsweredetectedinfirstgeneration.CRISPR/Cas9hasalsobeenappliedtolowermembersofkingdomPlantaelikealgae,bryophytes,pteridophytes,etc.Liverwortsemergeasmodelspeciesforstudyinglandplantevolution.MoleculargeneticsofMarchantiapolymorphaL.isstudiedbytheapplicationofCRISPR/cas9targetedmutagenesis(Suganoetal.,2014).Beyondgenomeediting,CRISPR/Cas9technologyiswidelydevelopingandusedforvariousotherpurposestounderstandfunctionalgenomicsandmolecularbiology.Thecurrentfocusisonloss-of-functionandgain-of-functionanalysisofindividualgenesandidentificationofgenemodulesandgeneticexpression.Figure6representstheexpandingfootprintsofCRISPR/Cas9systemofwhichmanyareyettobetestedinplants. FIGURE6 FIGURE6.VariousapplicationsofCRISPR/Cas9systemmanyofwhichareyettobetestedinplants. CRISPRhasreplacedtheRNAinterference(RNAi)genesilencingtechnologyforefficientandprecisegeneknockdown.IthasovercomevariouslimitationsofRNAitechnology,suchasincompleteloss-of-functionanalysisandextensiveoff-targetactivities.WiththedevelopmentofsimultaneousexpressionofmultipleguideRNAs(sgRNAs),CRISPR/Cas9systemallows,“multiplexgenomeediting.”Multiplexgenome-editingactsasapowerfultoolforreducinggeneticredundancyinparalogoussequencesbycreatingmultiplexgeneknockouts.IthasalsobeenusedtocreatechromosomaldeletionsfrommultipleDNAbasepairsinArabidopsis,Nicotianabenthamianaetc. GeneExpressionRegulation Manipulatingthegenomeofthetargetcellsisanotherwell-knownCRISPR/Cas9application.RepurposingCRISPR/Cas9geneeditingtogeneexpressionregulationisknownasCRISPRinterference(CRISPRi).CRISPRinterferenceinvolveseitheractivationorrepressionofthegeneexpression(BikardandMarraffini,2013).TheestablishmentofCRISPR/Cas9asgeneregulatorymachinerycameupmajorlyfromexperimentalstudiesonintracellularpathogenFrancisellanovicida.FTN-0757geneexpressesthevirulencefactorthatrepressestheproductionofabacteriallipoprotein(BLP).FTN-0757isfurtherexaminedasatypeIICas9proteinthatinassociationwithtracrRNAinactivateBLPexpressioninFrancisellanovicida.tracrRNAhasanimperfectcomplementaritytoBLPmessenger,whichrequiresCas9andasmallCRISPR-Cas-associatedRNA(scaRNA)forBLPmRNAdegradation(BikardandMarraffini,2013).AnumberofexcellentreviewsgivethedetailedinformationonprinciplesofgeneregulationbyCRISPR/Cassystemincluding(Larsonetal.,2013;Qietal.,2013;Xuetal.,2014;Leeetal.,2016). Targetedregulationofgeneexpressionprovidesinterestinginsightsintotheplantgenomeaswell(PetolinoandDavies,2013).Theectopicgeneexpressionregulationprovidesimportantinformationforgenefunctioningandcanalsobeappliedtodevelopregulatorycircuitsforsyntheticbiologyapplications(Puchta,2016).Precisemanipulationofthedesiredgeneexpressionbyrepressionoractivationcanelucidatethefunctionofindividualgenesandtheirroleincomplexdevelopmentalprocesses(Dominguezetal.,2016).Geneexpressionregulationdependsonthetypeofinducibleorrepressiblepromotersandthechemicalorphysicaltreatmentsforpromoteractivationandrepression.SimultaneousmultigenerepressioninplantswasevaluatedbyLowderetal.(2015).Asyntheticrepressorsystem(pCo-dCas9-3X-SRDX)wasdesignedandtestedonArabidopsiscleavagestimulatingfactor64(AtCSTF64)geneandonnon-proteincodinggenes(redundantmicroRNAs-miR159AandmiR159B).ThemultigenegRNAdesignedagainstthesegeneswereconstructedintoaT-DNAcassetteharboringpCo-dCas9-3X(SRDX)pUBQ10control.Thetranscriptlevelswerereducedapproximatelyby60%ascomparedtocontrolamongthethreeindependenttransgeniclines.Similarly,thetranscriptlevelswerereducedto50%andmoreintransgeniclinesexpressingmiR159AandmiR159Btargetingconstruct. LiveCellImaging Plantchromosomesarehighlyorganizedandcompactstructures.ThespatiotemporalorganizationofplantgenomedeterminestheregulatorycharacteristicsofvariouscellfunctionssuchasDNAreplicationandrepair,transcriptionandcelldeath.Studiesanalyzingsubcellularlocalizationofgenesandchangeinchromosomalstructuresprovideinsightsintogenomeregulationandthesystemicregulationofcodingandnon-codinggenesduringdevelopment.InvivovisualizationofthedefinedDNAsequencesisdonepriorbyfluorescentinsituhybridization(FISH)butCRISPRimaginghasovercomevariousissuesrelatedtoFISHsuchasitsinabilitytovisualizedynamicprocessesandtherequirementoffixedtissuesamples.FISHalsorequiresthecellfixationandDNAdenaturationstepwhichmayalterthechromatinstructure(Boettigeretal.,2016).CRISPR/Cas9technologyiscustomizedwiththeintroductionofCas9variantknownas“deadCas9”(dCas9).dCas9isacatalyticallyinactiveformofthenuclease(pointmutationineitherofthetwocatalyticdomains,HNHandRuvC)thatfuseswithgeneraltranscriptionfactorstoitsC-termini(Figure7).dCas9hastheabilitytobindtospecifictargetDNAguidedbysgRNAandallowsdirectimagingandmanipulationoftranscriptionwithoutalteringtheDNAsequence(Dominguezetal.,2016).Puchta(2017)developedaCRISPR-dCas9basedcellimagingtechniquebasedonsitedirectedmutagenesisoftwoCas9orthologsderivedfromStreptococcuspyrogens(Sp-dCas9)andStaphylococcusaureus(Sa-dCas9)followedbyfusionofmultiplecopiesoffluorescenceproteinstotheC-terminalendofeachdCas9variant.TheuseofdCas9toinhibitgeneexpressionisreferredasCRISPRinterference(CRISPRi).Itisalsousedtodeliverspecificcargosandeffectorproteinstotargetedgenomiclocifortranscriptionalgeneregulation.dCas9hasalsobeingutilizedtorecruittranscriptionalactivatorstothetargetpromoter(Bikardetal.,2013).GeneactivationandrepressioninplantsisstilladvancingwithpositiveresultsreportedinNicotianabenthamiana(Piateketal.,2015)andA.thaliana(Lowderetal.,2015).ThisnewCas9basedsystemcanfurtherbeemployedtocontrolthespatiotemporalpatternsofgeneexpressioninplantsandmodulatinglifecyclesofvariouseconomicallyusefulcrops(Yang,2015). FIGURE7 FIGURE7.SchematicrepresentationofCas9nucleaseactivityanditsmodifications.SpCas9endonucleasescreateDSBsintargetDNAthroughtheactivityofRuvCandHNHnucleasedomains.SpCas9nucleasescanbeconvertedintoDNAnickasebysubstitutionofitskeyaminoacidsD10AandH840Athatproducessinglestrandedbreaks.SitedirectedmutagenesisinD10AproducesCas9nD10AandmutationinHNHdomainproducesCas9n(H840A).MutationsinbothcatalyticresiduesmodifyCas9toaninactivedeadCas9(dCas9). GenerationofMutantLibraries Agenomiclibraryisanindispensabletooltoidentifygenefunctionbyassessingthecellularphenotypesoflossoffunctionmutants.Progressionofgeneticmutantlibrarieshassimplifiedthegenomicexplicationofgenefunctioninmultipleorganisms(SchaefferandNakata,2016).Geneticperturbationscanbeachievedviaconventionalapproacheslikealteringthecopynumberofthegene,mRNAorprotein;useofchemicalmutagens;irradiation(AhloowaliaandMaluszynski,2001);orrandomintegrationofforeignDNAs(Tadegeetal.,2008).cDNAlibrariesforgain-of-functionmutationsandshortinterfering(si)RNAlibrariesforloss-of-functionmutationsareconsideredashigh-throughputscreeningapproachesbuthavevariousdrawbackslikelackofcontrolofoverexpressionlevelsandobstinatedownstreamanalysisduetomutationatmultipleloci(AgrotisandKetteler,2015).NowCRISPR/Cas9isrepurposedtoenablehighthroughputsequencescreening.Functionalscreeningisgenerallydoneintwoformats-arrayedandpooled(Shalemetal.,2015).VariouspublicationsillustratetheroleofCRISPR/Cas9technologyinscreening.Thearrayedformatisaonegeneperwell-analyzingtool.Individualreagentsarearrangedinmultiwellplateswithasinglereagentperwell(Shalemetal.,2015).Sinceeachreagentispreparedseparately,thismethodisexpensiveandtime-consumingbutallowsinvestigationofawiderrangeofcellularphenotypes.Pooledlibrariesaresinglepreparationsofmanydifferentplasmids.Thesescreensarelessexpensiveandlaborintensive(Shalemetal.,2015). DNAFreeModificationsofPlantGenome Cas9editedcropsareassumedtocrossmanyhurdlesandissuestobeclassifiedasgeneticallymodifiedcrops.Generally,CRISPR/Cas9DNAconstructsaredeliveredintoplantcellsbyAgrobacterium-mediatedinfiltration(Lietal.,2013),particlebombardment(Miaoetal.,2013)andprotoplasttransfection(Shanetal.,2013).TheAgrobacterium-mediatedmethodismorepopularbecauseithasapropensitytoinsertsingleoralowcopynumberoftransgenesanddoesnotrequireanexpensiveparticlegunapparatus(Charetal.,2016).However,theextraDNAdeliveredalongthegRNA,Cas9andselectablemarkergenesfrequentlyintegrateintotheplantgenomeandmaycausesideeffectslikegenedisruption,plantmosaicismandofftargetdisruptions.ForeignDNAmoleculescanfurtherintegrateintothetargetedDSBsites,lessenstheefficiencyofgeneeditingandgeneinsertion. ToalleviatethedisadvantagesofplasmidbasedexpressionofCas9/gRNA;efficientDNA-freegenomeeditingisadoptedwhichusesCas9ribonucleoproteins(RNPs).Cas9RNPsareinvitropre-integratedCas9nucleasesandgRNAthataredeliveredintoplantcellsasRNAmolecules(Figure8).Cas9RNPsareequallyefficienttoplasmidbasedexpressionsystemsforgeneknockoutsandgeneediting.Theseribonucleoproteinscanbedeliveredinmammaliancellsvialipid-mediatedelectroporationortransfectiontechniques(Liangetal.,2015).However,inplantsthepresenceofcellwallhindersthesetechniques.Therefore,RNPsaredeliveredinisolatedplantprotoplastsandsuccessfulresultshavebeenobtainedinavarietyofplantssuchastobacco,Arabidopsis,lettuce,rice,Petunia,andwheat(Wooetal.,2015;Subburajetal.,2016;Zhangetal.,2017). FIGURE8 FIGURE8.ProposedworkflowforDNAfreegenomeediting.Cas9isexpressedpurifiedfromE.coli.InvitrotranscriptionofsingleguideRNA(sgRNA)andtranscribedinvitroandRNPcomplexformation.RNPsandDNAprecipitationonto0.6μmgoldparticlesfollowedbyParticlebombardmentintargetedcells.PlantsregenerationwithoutanyselectiveagentfrombombardedcellsandscreenedformutationsviaPCR/restrictionenzymeassayanddeepsequencing. Similarly,Malnoyetal.(2016)havetargetedtheMLO-7geneingrapesfordevelopingresistanceagainstpowderymildewdiseaseandDIPM-1,DIPM-2,andDIPM-4genesinappleforresistanceagainstfireblightdiseaseusingCRISPR/Cas9ribonucleoproteins.CommerciallyavailablerecombinantCas9protein(160kDa)wasusedandsgRNAwasdesignedviaCRISPRRGENtoolswebsitefortargetspecificsiteshavinghigheroutofframescorestoachievemaximumknockoutefficiency.DirectdeliveryofCRISPRRNPsinplantprotoplastandefficienttargetedmutagenesiswith0.1%and0.5–0.69%indels(insertionordeletion)intargetedsitesofMLO-7andDIPM-1,2,and4wasreportedrespectively.Butplantregenerationfromprotoplastischallengingformostofthecerealcrops,mainlymonocots.Therefore,DNA-freeefficientgenomeeditinghasbeendoneinmultiplecropslikerice,maize,wheatusingCRISPR/Cas9ribonucleoproteincomplexesviaparticlebombardmentinembryocells.Svitashevetal.(2016)arethepioneerstoreportbiolisticdeliveryofCas9-gRNARNPintoimmaturemaizeembryo.Liguleless1(LIG)gene,Malefertilitygenes(MS26andMS45)andAcetolactatesynthasegene(ALS2)wastargetedandmutationfrequenciesofCas9/gRNAplasmidbasedsystemandCas9RNPswereevaluated.MutationfrequenciesofplasmidbasedCas9system-0.004,0.020,0.004,and0.002%respectivelyforLIG,ALS2,MS26,andMS45wasremarkablylowwhencomparedtoRNPdeliverywherethefrequencieswere0.57,0.45,0.21,and0.69respectively.Finally,efficientdeliveryandhighcleavageactivityofRNPswasdemonstrated(Svitashevetal.,2016). CRISPR/Cas9OpportunitiesandConcerns Customizablesequencespecificnucleasesareapowerfultoolforplantgenomeediting.Historically,meganucleases,ZFNs,andTALENshavebeenSSNsofchoicebuttheintroductionofCRISPR/Cas9systemhasrevolutionizedthegenomeeditingtechnologies.Theimportanceofthissystemliesinitsrelativeeaseofuse,highprecision,andlowstart-upcost.ThemostdistinctfeatureofCRISPRtechnology,i.e.,DNAcleavagerecognitionthroughWatsonandCrickbasepairingdrasticallysimplifiestheDNAtargeting.TheemergenceoftwoRNAcomponents(CRISPRRNAandtransactivatingCRISPRRNA)intosgRNAhasfurthersimplifiedtheCRISPR/Cassystemandenhancedreagentdelivery(Jineketal.,2012;Congetal.,2013).CRISPR/Cassystemallowssimultaneoustargetingofmultiplegenomiclociduetothesimplifiedengineeringoftargetspecificity(Zhouetal.,2014).Moreover,CRISPR/CassystemcanreadilybeengineeredtoCas9nickases,introducingsinglestrandedbreaks.Comparedtozincfingernickasesandtranscriptionactivator-likeeffectornickases,Cas9nickaseshavenoresidualnucleaseactivityandgreatlyalleviatetheriskofoff-targetactivity. AdvancementsandcharacterizationofnewCRISPReffectorproteinshavebroadenedtherangeofbiotechnologicalapplicationsviaCRISPR/Cassystem.Forexample,dormancyinanycellssuchascancercellscanbeachievedusingtypeVIC2c2effectorproteins.C2c2caninhibitcellgrowthinvivowhenprimedwithcognateRNA(Abudayyehetal.,2016).ThepotentialofaninactiveprogrammableRNA-bindingprotein(dC2c2)canbeusedtotrackandvisualizespecificRNAsandtomodulatethefunctionofeffectormodulesthatcanbeusedfortheconstructionofsyntheticregulatorycircuitsandlarge-scalescreening(Abudayyehetal.,2016).Thecontinuousdevelopmentandvalidationofnewfunctionaltoolkitsprovideimmenseopportunitiestoactivateanimprintedgeneandgeneexpression.Lowderetal.(2015)havedevelopedamultifacetedtoolkitconsistingofGoldenGateandGatewaycompatiblevectors.TheydemonstratedthelessexploredmultiplexingbyexpressingthreeindependentgRNAssimultaneouslyintobacco,rice,andArabidopsisandsuccessfullytriggeredorsuppressedtheexpressionofproteincodingandnon-codinggenes.Kleinstiveretal.(2015)proposedasolutiontogRNAmismatchandoff-targeteditingbyfeaturingtheinteractionbetweenfourdifferentdomainsofCas9.ThesedomainsincreasethebindingenergyofCas9totargetedsequencesuptomismatches,thusweakeningtheseinteractionswouldprovidebetterresultstoimproveoff-targetinteractions.MajorlimitationsoftheCRISPR/Cas9systemincludeinefficientHDRtoNHEJratioandveryfewsimultaneouschangespercell.Thefrequentoccurrenceofnon-targeteffectsfurtherhamperstheuseofthistechnology.OneofthemajordrawbacksofCas9editingismismatchedcleavagewhenthegRNAmismatchesafewbases.ManyreportsindicatedtheinfrequencywithwhichCRISPRcutsthenon-targetedsequences(Fuetal.,2013;Hsuetal.,2013). VisionaryNotionsofthisTechnology ResearchinvestigationinthepastquadrennialhastranscendgenomeeditingtoolsrangingfromtargetedgenemodificationstodesigningeIF4Eresistancealleleswhichisakeyplayerinvirusresistance(Bastetetal.,2017)toaltergenestocreatemultipleattributesliketolerancetoabioticandbioticstressinplantsviz.droughttolerance,virusanddiseaseresistance,enhancednutritional,highyieldcropandenhanceshelf-lifeoftheplants.CRISPR-Cas9technologywitnessesthefutureofversatilegenomeeditingwithrobustandefficaciousconsequences.TheforteofgeneeditinginplantsincludingcropshasbeenradicallychangedbyCRISPR-Cas9technology.Exploringthefundamentalbiologyofplantdevelopmentandstressresponsewillfacilitateindesigningeliteandsuperiorcrops.TheCRISPR-Cas9holdsaverypromisingfutureinmakingdesignerplantsbytakingonlythegeneofinterestfromawildtypespeciesandthegeneisthendirectlyinterpolatedatapreciselocation,whichinturnopensmanyavenuesforplantbreedersformakingdesignerplants.Variousapproachesaregoingtodesignplantsinsuchamanner,whichcouldwithstandwithallpossibleharshchallenges.ThenewlyemergedCRISPR/Cas9RNPsystemevadedtheneedtorelayontargetcellpotentialforCas9translationanditsplausiblemeetingwithgRNA. CRISPR/Cas9sequencespecificnucleaseeditingisaneffectiveapproachtocombatriceblastdisease(Wangetal.,2016).OsERF922geneinricewastargetedand21CRISPR-ERF922inducedmutantswereidentifiedfrom50T0transgenicplants(Wangetal.,2016).Furthermore,thehighthroughputcanbeobtainedbycoalescenceofcytidinedeaminaseenzymewithCas9,whichpermitshigh-efficiencyemendationoftargetcodonsinrice(LiL.etal.,2016).dCas9fusionwithcytidinedeaminaseallowsdirectconversionofcytidinetouridineleadingtoapointmutationfromC/GbptoT/Abpduringreplicationinoneofthedaughtercells(Puchta,2016).Researchesintheadvancementoflegendarytechnologyaredeliberatelygoingonbutonestubbornandconstantlyfollowingpitfallrelatedtooff-targetsinplants,whichcouldbeexecutedbydoingwholegenomesequencing.Manycompaniesarealsoengagedinusingthistechnologyfortheproductionofelitefoodandfeedcrops.Theproducts,whichareobtainedbyeditingthroughCRISPR-Cas9,havenoexogenousDNAandfurthermoreeditingcanbedoneinsuchaway,whichabidesbyalltherulesandregulationsthatarecomplaisanttowithstandagainstGeneticallyModifiedissuesandcangetaneasyapprovalbytheDepartmentofAgriculture(USDA).Inconclusion,CRISPR-Cas9technologyboastsofapromisingfutureinmakingthedesiredmutationinplantsbecauseithastransformedandmetamorphosedourpotentialtomodifyandregulateprokaryoticandeukaryoticgenomes.Theprevalentuseofthistechnologywillsurelyexpediteitspace. AuthorContributions LAhaswrittenthemanuscriptunderthesupervisionanddraftingofAN.ThereviewwasfinallyeditedandsubmittedbyAN. Funding ThearticleforpublicationissupportedbyFrontiersinPlantScience. ConflictofInterestStatement Theauthorsdeclarethattheresearchwasconductedintheabsenceofanycommercialorfinancialrelationshipsthatcouldbeconstruedasapotentialconflictofinterest. Acknowledgment Theauthorsarethankfultofrontiersforthefinancialassistance. References Abudayyeh,O.O.,Gootenberg,J.S.,Konermann,S.,Joung,J.,Slaymaker,I.M.,Cox,D.B.,etal.(2016).C2c2isasingle-componentprogrammableRNA-guidedRNA-targetingCRISPReffector.Science353,557–566.doi:10.1126/science.aaf5573 PubMedAbstract|CrossRefFullText|GoogleScholar Agrotis,A.,andKetteler,R.(2015).AnewageinfunctionalgenomicsusingCRISPR/Cas9inarrayedlibraryscreening.Front.Genet.6:300.doi:10.3389/fgene.2015.00300 PubMedAbstract|CrossRefFullText|GoogleScholar Ahloowalia,B.S.,andMaluszynski,M.(2001).Inducedmutations-Anewparadigminplantbreeding.Euphytica118,167–173.doi:10.1023/A:1004162323428 CrossRefFullText|GoogleScholar Ainley,W.M.,Sastry-Dent,L.,Welter,M.E.,Murray,M.G.,Zeitler,B.,Amora,R.,etal.(2013).Traitstackingviatargetedgenomeediting.PlantBiotechnol.J.11,1126–1134.doi:10.1111/pbi.12107 PubMedAbstract|CrossRefFullText|GoogleScholar Alagoz,Y.,Gurkok,T.,Zhang,B.,andUnver,T.(2016).Manipulatingthebiosynthesisofbioactivecompoundalkaloidsfornext-generationmetabolicengineeringinopiumpoppyusingCRISPR-Cas9genomeeditingtechnology.Sci.Rep.6,309–310.doi:10.1038/srep30910 PubMedAbstract|CrossRefFullText|GoogleScholar Ali,Z.,Abulfaraj,A.,Idris,A.,Ali,S.,Tashkandi,M.,andMahfouz,M.M.(2015).CRISPR/Cas9-mediatedviralinterferenceinplants.GenomeBiol.16,238–249.doi:10.1186/s13059-015-0799-6 PubMedAbstract|CrossRefFullText|GoogleScholar Amitai,G.,andSorek,R.(2016).CRISPR-Casadaptation:insightsintothemechanismofaction.Nat.Rev.Microbiol.14,67–76.doi:10.1038/nrmicro.2015.14 PubMedAbstract|CrossRefFullText|GoogleScholar Andersson,M.,Turesson,H.,Nicolia,A.,Fält,A.S.,Samuelsson,M.,andHof-vander,P.(2016).Efficienttargetedmultiallelicmutagenesisintetraploidpotato(Solanumtuberosum)bytransientCRISPR-Cas9expressioninprotoplasts.PlantCellRep.36,117–128.doi:10.1007/s00299-016-2062-3 PubMedAbstract|CrossRefFullText|GoogleScholar Baltes,N.J.,Gil-Humanes,J.,Cermak,T.,Atkins,P.A.,andVoytas,D.F.(2014).DNArepliconsforplantgenomeengineering.PlantCell26,151–163.doi:10.1105/tpc.113.119792 PubMedAbstract|CrossRefFullText|GoogleScholar Barrangou,R.,Fremaux,C.,Deveau,H.,Richards,M.,Boyaval,P.,Moineau,S.,etal.(2007).CRISPRprovidesacquiredresistanceagainstvirusesinprokaryotes.Science315,1709–1712.doi:10.1126/science.1138140 PubMedAbstract|CrossRefFullText|GoogleScholar Bastet,A.,Robaglia,C.,andGallois,J.C.(2017).eIF4EResistance:NaturalVariationShouldGuideGeneEditing.TrendsPlantSci.17,S1360–S1385.doi:10.1016/j.tplants.2017.01.008 PubMedAbstract|CrossRefFullText|GoogleScholar Bikard,D.,Jiang,W.,Samai,P.,Hochschild,A.,Zhang,F.,andMarraffini,L.A.(2013).ProgrammablerepressionandactivationofbacterialgeneexpressionusinganengineeredCRISPR–Cassystem.NucleicAcidsRes.41,7429–7437.doi:10.1093/nar/gkt520 PubMedAbstract|CrossRefFullText|GoogleScholar Bikard,D.,andMarraffini,L.A.(2013).ControlofgeneexpressionbyCRISPR-Cassystems.F1000PrimeRep.5:47.doi:10.12703/P5-47 PubMedAbstract|CrossRefFullText|GoogleScholar Boch,J.,Scholze,H.,Schornack,S.,Landgraf,A.,Hahn,S.,Kay,S.,etal.(2009).BreakingthecodeofDNAbindingspecificityofTAL-typeIIIeffectors.Science326,1509–1512.doi:10.1126/science.1178811 PubMedAbstract|CrossRefFullText|GoogleScholar Boettiger,A.N.,Bintu,B.,Moffitt,J.R.,Wang,S.,Beliveau,B.J.,Fudenberg,G.,etal.(2016).Super-resolutionimagingrevealsdistinctchromatinfoldingfordifferentepigeneticstates.Nature529,418–422.doi:10.1038/nature16496 PubMedAbstract|CrossRefFullText|GoogleScholar Bolotin,A.,Quinquis,B.,Sorokin,A.,andEhrlich,S.D.(2005).Clusteredregularlyinterspacedshortpalindromerepeats(CRISPRs)havespacersofextra-chromosomalorigin.Microbiology151,2551–2561.doi:10.1099/mic.0.28048-0 PubMedAbstract|CrossRefFullText|GoogleScholar Bortesi,L.,andFischer,R.(2015).TheCRISPR/Cas9systemforplantgenomeeditingandbeyond.Biotechnol.Adv.33,41–52.doi:10.1016/j.biotechadv.2014.12.006 PubMedAbstract|CrossRefFullText|GoogleScholar Brooks,C.,Nekrasov,V.,Lippman,Z.B.,andVanEck,J.(2014).Efficientgeneeditingintomatointhefirstgenerationusingtheclusteredregularlyinterspacedshortpalindromicrepeats/CRISPR-associated9system.PlantPhysiol.166,1292–1297.doi:10.1104/pp.114.247577 PubMedAbstract|CrossRefFullText|GoogleScholar Brouns,S.J.,Jore,M.M.,Lundgren,M.,Westra,E.R.,Slijkhuis,R.J.,Snijders,A.P.,etal.(2008).SmallCRISPRRNAsguideantiviraldefenseinprokaryotes.Science321,960–964.doi:10.1126/science.1159689 PubMedAbstract|CrossRefFullText|GoogleScholar Cermak,T.,Baltes,N.J.,Cegan,R.,Zhang,Y.,andVoytas,D.F.(2015).Highfrequency,precisemodificationofthetomatogenome.GenomeBiol.16,232–246.doi:10.1186/s13059-015-0796-9 PubMedAbstract|CrossRefFullText|GoogleScholar Chandrasekaran,J.,Brumin,M.,Wolf,D.,Leibman,D.,Klap,C.,Pearlsman,M.,etal.(2016).Developmentofbroadvirusresistanceinnon-transgeniccucumberusingCRISPR/Cas9technology.Mol.PlantPathol.17,1140–1153.doi:10.1111/mpp.12375 PubMedAbstract|CrossRefFullText|GoogleScholar Char,S.N.,Neelakandan,A.K.,Nahampun,H.,Frame,B.,Main,M.,Spalding,M.H.,etal.(2016).AnAgrobacterium-deliveredCRISPR/Cas9systemforhigh-frequencytargetedmutagenesisinmaize.PlantBiotechnol.J.15,257–268.doi:10.111/pbi.12611 CrossRefFullText|GoogleScholar Chen,X.,Lu,X.,Shu,N.,Wang,S.,Wang,J.,Wang,D.,etal.(2017).Targetedmutagenesisincotton(GossypiumhirsutumL.)usingtheCRISPR/Cas9system.Sci.Rep.7,44304–44311.doi:10.1038/srep44304 PubMedAbstract|CrossRefFullText|GoogleScholar Choi,K.R.,andLee,S.Y.(2016).CRISPRtechnologiesforbacterialsystems:currentachievementsandfuturedirections.Biotechnol.Adv.34,1180–1209.doi:10.1016/j.biotechadv.2016.08.002 PubMedAbstract|CrossRefFullText|GoogleScholar Christian,M.,Cermak,T.,Doyle,E.L.,Schmidt,C.,Zhang,F.,Hummel,A.,etal.(2010).TargetingDNAdouble-strandbreakswithTALeffectornucleases.Genetics186,757–761.doi:10.1534/genetics.110.120717 PubMedAbstract|CrossRefFullText|GoogleScholar Collonnier,C.,DebasT,A.G.,Maclot,F.,Mara,K.,Charlot,F.,andNogue,F.(2017).TowardsmasteringCRISPR-inducedgeneknock-ininplants:surveyofkeyfeaturesandfocusonthemodelPhyscomitrellapatens.Methods121-122,103–117.doi:10.1016/j.ymeth.2017.04.024 PubMedAbstract|CrossRefFullText|GoogleScholar Cong,L.,Ran,F.A.,Cox,D.,Lin,S.,Barretto,R.,Habib,N.,etal.(2013).MultiplexgenomeengineeringusingCRISPR/Cassystems.Science339,819–823.doi:10.1126/science.1231143 PubMedAbstract|CrossRefFullText|GoogleScholar Curtin,S.J.,Zhang,F.,Sander,J.D.,Haun,W.J.,Starker,C.,Baltes,N.J.,etal.(2011).Targetedmutagenesisofduplicatedgenesinsoybeanwithzinc-fingernucleases.PlantPhysiol.156,466–473.doi:10.1104/pp.111.172981 PubMedAbstract|CrossRefFullText|GoogleScholar Deltcheva,E.,Chylinski,K.,Sharma,C.M.,Gonzales,K.,Chao,Y.,Pirzada,Z.A.,etal.(2011).CRISPRRNAmaturationbytrans-encodedsmallRNAandhostfactorRNaseIII.Nature471,602–607.doi:10.1038/nature09886 PubMedAbstract|CrossRefFullText|GoogleScholar Dominguez,A.A.,Lim,W.A.,andQi,L.S.(2016).Beyondediting:repurposingCRISPR–Cas9forprecisiongenomeregulationandinterrogation.Nat.Rev.Mol.CellBiol.17,5–15.doi:10.1038/nrm.2015.2 PubMedAbstract|CrossRefFullText|GoogleScholar Esvelt,K.M.,Mali,P.,Braff,J.L.,Moosburner,M.,Yaung,S.J.,andChurch,G.M.(2013).OrthogonalCas9proteinsforRNA-guidedgeneregulationandediting.Nat.Methods10,1116–1121.doi:10.1038/nmeth.2681 PubMedAbstract|CrossRefFullText|GoogleScholar Fan,D.,Liu,T.T.,Li,C.F.,Jiao,B.,Li,S.,Hou,Y.S.,etal.(2015).EfficientCRISPR/Cas9-mediatedtargetedmutagenesisinPopulusinthefirstgeneration.Sci.Rep.5,12217–12223.doi:10.1038/srep12217 PubMedAbstract|CrossRefFullText|GoogleScholar Fauser,F.,Schiml,S.,andPuchta,H.(2014).BothCRISPR/CasbasednucleasesandnickasescanbeusedefficientlyforgenomeengineeringinArabidopsisthaliana.PlantJ.79,348–359.doi:10.1111/tpj.12554 PubMedAbstract|CrossRefFullText|GoogleScholar Feng,Z.,Mao,Y.,Xu,N.,Zhang,B.,Wei,P.,Yang,D.L.,etal.(2014).Multigenerationanalysisrevealstheinheritance,specificity,andpatternsofCRISPR/Cas-inducedgenemodificationsinArabidopsis.Proc.Natl.Acad.Sci.U.S.A.111,4632–4637.doi:10.1073/pnas.1400822111 PubMedAbstract|CrossRefFullText|GoogleScholar Feng,Z.,Zhang,B.,Ding,W.,Liu,X.,Yang,D.L.,Wei,P.,etal.(2013).EfficientgenomeeditinginplantsusingaCRISPR/Cassystem.CellRes.23,1229–1232.doi:10.1038/cr.2013.114 PubMedAbstract|CrossRefFullText|GoogleScholar Fu,Y.,Foden,J.A.,Khayter,C.,Maeder,M.L.,Reyon,D.,Joung,J.K.,etal.(2013).Highfrequencyoff-targetmutagenesisinducedbyCRISPR-Casnucleasesinhumancells.Nat.Biotechnol.31,822–826.doi:10.1038/nbt.2623 PubMedAbstract|CrossRefFullText|GoogleScholar Gaj,T.,Gersbach,C.A.,andBarbas,C.F.(2013).ZFN,TALEN,andCRISPR/Cas-basedmethodsforgenomeengineering.TrendsBiotechnol.31,397–405.doi:10.1016/j.tibtech.2013.04.004 PubMedAbstract|CrossRefFullText|GoogleScholar Gao,J.,Wang,G.,Ma,S.,Xie,X.,Wu,X.,Zhang,X.,etal.(2015).CRISPR/Cas9mediatedtargetedmutaGenesisinNicotianatabacum.PlantMol.Biol.87,99–110.doi:10.1007/s11103-014-0263-0 PubMedAbstract|CrossRefFullText|GoogleScholar Gao,Y.,andZhao,Y.(2014).Self-processingofribozyme-flankedRNAsintoguideRNAsinvitroandinvivoforCRISPR-mediatedgenomeediting.J.Int.PlantBiol.56,343–349.doi:10.1111/jipb.12152 PubMedAbstract|CrossRefFullText|GoogleScholar Garneau,J.E.,Dupuis,M.E.,Villion,M.,Romero,D.A.,Barrangou,R.,Boyaval,P.,etal.(2010).TheCRISPR/CasbacterialimmunesystemcleavesbacteriophageandplasmidDNA.Nature468,67–71.doi:10.1038/nature09523 PubMedAbstract|CrossRefFullText|GoogleScholar Geisinger,J.M.,Turan,S.,Hernandez,S.,Spector,L.P.,andCalos,M.P.(2016).Invivoblunt-endcloningthroughCRISPR/Cas9-facilitatednon-homologousend-joining.NucleicAcidsRes.44,e76.doi:10.1093/nar/gkv1542 PubMedAbstract|CrossRefFullText|GoogleScholar Haft,D.H.,Selengut,J.,Mongodin,E.F.,andNelson,K.E.(2005).Aguildof45CRISPR-associated(Cas)proteinfamiliesandmultipleCRISPR/Cassubtypesexistinprokaryoticgenomes.PLOSComput.Biol.1:e60.doi:10.1371/journal.pcbi.0010060 PubMedAbstract|CrossRefFullText|GoogleScholar Hale,C.R.,Zhao,P.,Olson,S.,Duff,M.O.,Graveley,B.R.,Wells,L.,etal.(2009).RNA-guidedRNAcleavagebyaCRISPRRNA-Casproteincomplex.Cell139,945–956.doi:10.1016/j.cell.2009.07.040 PubMedAbstract|CrossRefFullText|GoogleScholar Halterman,D.,Guenthner,J.,Collinge,S.,Butler,N.,andDouches,D.(2015).BiotechPotatoesinthe21stCentury:20yearssincethefirstbiotechpotato.Am.J.Potato93,1–20.doi:10.1007/s12230-015-9485-1 CrossRefFullText|GoogleScholar Hilton,I.B.,D’Ippolito,A.M.,Vockley,C.M.,Thakore,P.I.,Crawford,G.E.,andReddy,T.E.(2015).EpigenomeeditingbyaCRISPR-Cas9-basedacetyltransferaseactivatesgenesfrompromotersandenhancers.Nat.Biotechnol.33,510–517.doi:10.1038/nbt.3199 PubMedAbstract|CrossRefFullText|GoogleScholar Horvath,P.,Romero,D.A.,Coute-Monvoisin,A.C.,Richards,M.,Deveau,H.,Moineau,S.,etal.(2008).Diversity,activity,andevolutionofCRISPRlociinStreptococcusthermophilus.J.Bacteriol.190,1401–1412.doi:10.1128/JB.01415-07 PubMedAbstract|CrossRefFullText|GoogleScholar Hou,Z.,Zhang,Y.,Propson,N.E.,Howden,S.E.,Chu,L.F.,Sontheimer,E.J.,etal.(2013).EfficientgenomeengineeringinhumanpluripotentstemcellsusingCas9fromNeisseriameningitidis.Proc.Natl.Acad.Sci.U.S.A.110,15644–15649.doi:10.1073/pnas.1313587110 PubMedAbstract|CrossRefFullText|GoogleScholar Hsu,P.D.,Scott,D.A.,Weinstein,J.A.,Ran,F.A.,Konermann,S.,Agarwala,V.,etal.(2013).DNAtargetingspecificityofRNA-guidedCas9nucleases.Nat.Biotechnol.31,827–832.doi:10.1038/nbt.2647 PubMedAbstract|CrossRefFullText|GoogleScholar Humanes,J.G.,Wang,Y.,Liang,Z.,Shan,Q.,Ozuna,C.V.,andSaìnchez-Leoìn,S.(2017).High-efficiencygenetargetinginhexaploidwheatusingDNArepliconsandCRISPR/Cas9.PlantJ.89,1251–1262.doi:10.1111/tpj.13446 PubMedAbstract|CrossRefFullText|GoogleScholar Iqbal,Z.,Sattar,M.N.,andShafiq,M.(2016).CRISPR/Cas9:atooltocircumscribecottonleafcurldisease.Front.PlantSci.7:475.doi:10.3389/fpls.2016.00475 PubMedAbstract|CrossRefFullText|GoogleScholar Ishino,Y.,Shinagawa,H.,Makino,K.,Amemura,M.,andNakata,A.(1987).Nucleotidesequenceoftheiapgene,responsibleforalkalinephosphataseisozymeconversioninEscherichiacoli,andidentificationofthegeneproduct.J.Bacteriol.169,5429–5433. PubMedAbstract|GoogleScholar Jackson,R.N.,Golden,S.M.,Van-Erp,P.B.,Carter,J.,Westra,E.R.,Brouns,S.J.,etal.(2014).CrystalstructureoftheCRISPRRNA-guidedsurveillancecomplexfromEscherichiacoli.Science345,1473–1479.doi:10.1126/science.1256328 PubMedAbstract|CrossRefFullText|GoogleScholar Jacobs,T.B.,LaFayette,P.R.,Schmitz,R.J.,andParrott,W.A.(2015).TargetedgenomemodificationsinsoybeanwithCRISPR/Cas9.BMCBiotechnol.15:16.doi:10.1186/s12896-015-0131-2 PubMedAbstract|CrossRefFullText|GoogleScholar Jansen,R.,Embden,J.D.,Gaastra,W.,andSchouls,L.M.(2002).IdentificationofgenesthatareassociatedwithDNArepeatsinprokaryotes.Mol.Microbiol.43,1565–1575.doi:10.1046/j.1365-2958.2002.02839.x CrossRefFullText|GoogleScholar Jiang,W.,Brueggeman,A.J.,Horken,K.M.,Plucinak,T.M.,andWeeks,D.P.(2014).SuccessfultransientexpressionofCas9/sgRNAgenesinChlamydomonasreinhardtii.Eukaryot.Cell13,1465–1469.doi:10.1128/EC.00213-14 PubMedAbstract|CrossRefFullText|GoogleScholar Jiang,W.Z.,Henry,I.M.,Lynagh,P.G.,Comai,L.,Cahoon,E.B.,andWeeks,D.P.(2016).Significantenhancementoffattyacidcompositioninseedsoftheallohexaploid,Camelinasativa,usingCRISPR/Cas9geneediting.PlantBiotechnol.J.15,648–657.doi:10.1111/pbi.12663 PubMedAbstract|CrossRefFullText|GoogleScholar Jiang,W.Z.,Zhou,H.B.,Bi,H.H.,Fromm,M.,Yang,B.,andWeeks,D.P.(2013).DemonstrationofCRISPR/Cas9/sgRNA-mediatedtargetedgenemodificationinArabidopsis,Tobacco,Sorghumandrice.NucleicAcidsRes.41,e188.doi:10.1093/nar/gkt780 PubMedAbstract|CrossRefFullText|GoogleScholar Jinek,M.,Chylinski,K.,Fonfara,I.,Hauer,M.,Doudna,J.A.,andCharpentier,E.(2012).Aprogrammabledual-RNA-guidedDNAendonucleaseinadaptivebacterialimmunity.Science337,816–821.doi:10.1126/science.1225829 PubMedAbstract|CrossRefFullText|GoogleScholar Johnson,R.A.,Gurevich,V.,Filler,S.,Samach,A.,andLevy,A.A.(2015).ComparativeassessmentsofCRISPR-Casnucleasescleavageefficiencyinplanta.PlantMol.Biol.87,143–156.doi:10.1007/s11103-014-0266-x PubMedAbstract|CrossRefFullText|GoogleScholar Joung,J.K.,andSander,J.D.(2012).TALENs:awidelyapplicabletechnologyfortargetedgenomeediting.Nat.Rev.Mol.CellBiol.14,49–55.doi:10.1038/nrm3486 PubMedAbstract|CrossRefFullText|GoogleScholar Khan,A.A.,Betel,D.,Miller,M.L.,Sander,C.,Leslie,C.S.,andMarks,D.S.(2009).TransfectionofsmallRNAsgloballyperturbsgeneregulationbyendogenousmicroRNAs.Nat.Biotechnol.27,549–555.doi:10.1038/nbt.1543 PubMedAbstract|CrossRefFullText|GoogleScholar Kim,D.,Kim,J.,Junho,K.H.,Been,K.W.,Yoon,S.,andKim,J.(2016).Genome-wideanalysisrevealsspecificitiesofCpf1nucleasesinhumancells.Nat.Biotechnol.34,863–868.doi:10.1038/nbt.3609 PubMedAbstract|CrossRefFullText|GoogleScholar Kleinstiver,B.P.,Prew,M.S.,Tsai,S.Q.,Topkar,V.V.,Nguyen,N.T.,Zheng,Z.,etal.(2015).EngineeredCRISPR-Cas9nucleaseswithalteredPAMspecificities.Nature523,481–485.doi:10.1038/nature14592 PubMedAbstract|CrossRefFullText|GoogleScholar Larson,M.H.,Gilbert,L.A.,Wang,X.,Lim,W.A.,andWeis,J.S.(2013).CRISPRinterference(CRISPRi)forsequence-specificcontrolofgeneexpression.Nat.Protoc.8,2180–2196.doi:10.1038/nprot.2013.132 PubMedAbstract|CrossRefFullText|GoogleScholar Lawrenson,T.,Shorinola,O.,Stacey,N.,Li,C.,Ostergaard,L.,Patron,N.,etal.(2015).Inductionoftargeted,heritablemutationsinbarleyandBrassicaoleraceausingRNA-guidedCas9nuclease.GenomeBiol.16,258–271.doi:10.1186/s13059-015-0826-7 PubMedAbstract|CrossRefFullText|GoogleScholar Lee,Y.J.,YoungJeLeeConnor,A.H.,Leong,M.C.,andMoon,T.S.(2016).ProgrammablecontrolofbacterialgeneexpressionwiththecombinedCRISPRandantisenseRNAsystem.NucleicAcidsRes.44,2462–2473.doi:10.1093/nar/gkw056 PubMedAbstract|CrossRefFullText|GoogleScholar Li,B.,Cui,G.,Shen,G.,Zhan,Z.,Huang,L.,Chen,J.,etal.(2017).TargetedmutaGenesisinthemedicinalplantSalviamiltiorrhiza.Sci.Rep.7,43320–43329.doi:10.1038/srep43320 PubMedAbstract|CrossRefFullText|GoogleScholar Li,J.,Norville,J.E.,Aach,J.,McCormack,M.,Zhang,D.,Bush,J.,etal.(2013).Multiplexandhomologousrecombination-mediatedgenomeeditinginArabidopsisandNicotianabenthamianausingguideRNAandCas9.Nat.Biotechnol.31,688–691.doi:10.1038/nbt.2654 PubMedAbstract|CrossRefFullText|GoogleScholar Li,L.,Liu,Y.,Chen,B.,Xu,K.,Zhang,F.,Li,H.,etal.(2016).Agenome-wideassociationstudyrevealsnewlociforresistancetoclubrootdiseaseinBrassicanapus.Front.PlantSci.7:1483.doi:10.3389/fpls.2016.01483 PubMedAbstract|CrossRefFullText|GoogleScholar Li,M.,Li,X.,Zhou,Z.,Wu,P.,Fang,M.,Pan,X.,etal.(2016).ReassessmentofthefouryieldrelatedgenesGn1a,DEP1,GS3,andIPA1inriceusingaCRISPR/Cas9system.Front.PlantSci.7:377.doi:10.3389/fpls.2016.00377 PubMedAbstract|CrossRefFullText|GoogleScholar Li,Z.,Liu,Z.,Xing,A.,Moon,B.P.,Koellhoffer,J.P.,andHuang,L.(2015).Cas9-guideRNAdirectedgenomeeditinginsoybean.PlantPhysiol.169,960–970.doi:10.1104/pp.15.00783 PubMedAbstract|CrossRefFullText|GoogleScholar Liang,X.,Potter,J.,Kumar,S.,Zou,Y.,Quintanilla,R.,Sridharan,M.,etal.(2015).RapidandhighlyefficientcellengineeringviaCas9proteintransfection.J.Biotechnol.208,44–53.doi:10.1016/j.jbiotec.2015.04.024 PubMedAbstract|CrossRefFullText|GoogleScholar Liang,Z.,Zhang,K.,Chen,K.,andGao,C.(2014).TargetedmutagenesisinZeamaysusingTALENsandtheCRISPR/Cassystem.J.Genet.Genomics41,63–68.doi:10.1016/j.jgg.2013.12.001 PubMedAbstract|CrossRefFullText|GoogleScholar Lowder,L.G.,Zhang,D.,Baltes,N.J.,Paul,J.W.,Tang,X.,Zheng,X.,etal.(2015).ACRISPR-Cas9toolboxformultiplexedplantgenomeeditingandtranscriptionalregulation.PlantPhysiol.169,971–985.doi:10.1104/pp.15.00636 PubMedAbstract|CrossRefFullText|GoogleScholar Ma,X.,Zhang,Q.,Zhu,Q.,Liu,W.,Chen,Y.,Qiu,R.,etal.(2015).ArobustCRISPR-Cas9systemforconvenienthigh-efficiencymultiplexgenomeeditinginmonocotanddicotplants.Mol.Plant.8,1274–1284.doi:10.1016/j.molp.2015.04.007 PubMedAbstract|CrossRefFullText|GoogleScholar Makarova,K.S.,Haft,D.H.,Barrangou,R.,Brouns,S.J.J.,Charpentier,E.,Horvath,P.,etal.(2011).EvolutionandclassificationoftheCRISPR-Cassystems.Nat.Rev.Microbiol.9,467–477.doi:10.1038/nrmicro3569 PubMedAbstract|CrossRefFullText|GoogleScholar Makarova,K.S.,Wolf,Y.I.,Alkhnbashi,O.S.,Costa,F.,Shah,S.A.,Saunders,S.J.,etal.(2015).AnupdatedevolutionaryclassificationofCRISPR-Cassystems.Nat.Rev.Microbiol.13,722–736.doi:10.1038/nrmicro3569 PubMedAbstract|CrossRefFullText|GoogleScholar Malnoy,M.,Viola,R.,Jung,M.H.,Koo,O.J.,Kim,S.,Kim,J.S.,etal.(2016).DNA-freegeneticallyeditedgrapevineandappleprotoplastusingCRISPR/Cas9ribonucleoproteins.Front.PlantSci.7:1904.doi:10.3389/fpls.2016.01904 PubMedAbstract|CrossRefFullText|GoogleScholar Mao,Y.F.,Zhang,H.,Xu,N.F.,Zhang,B.T.,Gou,F.,andZhu,J.K.(2013).ApplicationoftheCRISPR-Cassystemforefficientgenomeengineeringinplants.Mol.Plant.6,2008–2011.doi:10.1093/mp/sst121 PubMedAbstract|CrossRefFullText|GoogleScholar Marraffini,L.A.,andSontheimer,E.J.(2008).CRISPRinterferencelimitshorizontalgenetransferinStaphylococcibytargetingDNA.Science322,1843–1845.doi:10.1126/science.1165771 PubMedAbstract|CrossRefFullText|GoogleScholar Miao,J.,Guo,D.,Zhang,J.,Huang,Q.,Qin,G.,Zhang,X.,etal.(2013).TargetedmutagenesisinriceusingCRISPR-Cassystem.CellRes.23,1233–1236.doi:10.1038/cr.2013.123 PubMedAbstract|CrossRefFullText|GoogleScholar Mojica,F.J.,Díez-Villaseñor,C.,García-Martínez,J.,andSoria,E.(2005).Interveningsequencesofregularlyspacedprokaryoticrepeatsderivefromforeigngeneticelements.J.Mol.Evol.60,174–182.doi:10.1007/s00239-004-0046-3 PubMedAbstract|CrossRefFullText|GoogleScholar Moscou,M.J.,andBogdanove,A.J.(2009).AsimpleciphergovernsDNArecognitionbyTALeffectors.Science326,1501.doi:10.1126/science.1178817 PubMedAbstract|CrossRefFullText|GoogleScholar Mulepati,S.,Heroux,A.,andBailey,S.(2014).CrystalstructureofaCRISPRRNA-guidedsurveillancecomplexboundtoassDNAtarget.Science345,1479–1484.doi:10.1126/science.1256996 PubMedAbstract|CrossRefFullText|GoogleScholar Nakayama,T.,Fish,M.B.,Fisher,M.,Oomen-Hajagos,J.,Thomsen,G.H.,andGrainger,R.M.(2013).SimpleandefficientCRISPR-Cas9-mediatedtargetedmutagenesisinXenopustropicalis.Genesis51,835–843.doi:10.1002/dvg.22720 PubMedAbstract|CrossRefFullText|GoogleScholar Nekrasov,V.,Staskawicz,B.,Weigel,D.,Jones,J.D.,andKamoun,S.(2013).TargetedmutagenesisinthemodelplantNicotianabenthamianausingCas9-guidedendonuclease.Nat.Biotechnol.31,691–693.doi:10.1038/nbt.2655 PubMedAbstract|CrossRefFullText|GoogleScholar Nishitani,C.,Hirai,N.,Komori,S.,Wada,M.,Okada,K.,Osakabe,K.,etal.(2016).EfficientgenomeeditinginappleusingaCRISPR/Cas9system.Sci.Rep.6:31481.doi:10.1038/srep31481 PubMedAbstract|CrossRefFullText|GoogleScholar Osakabe,K.,Osakabe,Y.,andToki,S.(2010).Site-directedmutaGenesisinArabidopsisusingcustom-designedzincfingernucleases.Proc.Natl.Acad.Sci.U.S.A.107,12034–12039.doi:10.1073/pnas.1000234107 PubMedAbstract|CrossRefFullText|GoogleScholar Pabo,C.O.,Peisach,E.,andGrant,R.A.(2001).DesignandselectionofnovelCys2His2zincfingerproteins.Annu.Rev.Biochem.70,313–340.doi:10.1146/annurev.biochem.70.1.313 CrossRefFullText|GoogleScholar Pan,C.T.,Ye,L.,Qin,L.,Liu,X.,He,Y.J.,Wang,J.,etal.(2016).CRISPR/Cas9-mediatedefficientandheritabletargetedmutagenesisintomatoplantsinthefirstandlatergenerations.Sci.Rep.6:24765.doi:10.1038/srep24765 PubMedAbstract|CrossRefFullText|GoogleScholar Peng,A.,Chen,S.,Lei,T.,Xu,L.,He,Y.,Wu,L.,etal.(2017).Engineeringcanker-resistantplantsthroughCRISPR/Cas9-targetededitingofthesusceptibilitygeneCsLOB1promoterincitrus.PlantBiotechnol.J.doi:10.1111/pbi.12733[Epubaheadofprint]. PubMedAbstract|CrossRefFullText|GoogleScholar Perdigones,S.A.,Vilar,V.M.,Palaci,J.,Castelijns,B.,Forment,J.,Ziarsolo,P.,etal.(2013).GoldenBraid2.0:acomprehensiveDNAassemblyframeworkforplantsyntheticbiology.PlantPhysiol.162,1618–1631.doi:10.1104/pp.113.217661 PubMedAbstract|CrossRefFullText|GoogleScholar Petolino,J.F.,andDavies,J.P.(2013).Designedtranscriptionalregulatorsfortraitdevelopment.PlantSci.201,128–136.doi:10.1016/j.plantsci.2012.12.006 PubMedAbstract|CrossRefFullText|GoogleScholar Piatek,A.,Ali,Z.,Baazim,H.,Li,L.,Abulfaraj,A.,andAl-Shareef,S.(2015).RNA-guidedtranscriptionalregulationinplantaviasyntheticdCas9-basedtranscriptionfactors.PlantBiotechnol.J.13,578–589.doi:10.1111/pbi.12284 PubMedAbstract|CrossRefFullText|GoogleScholar Pourcel,C.,Salvignol,G.,andVergnaud,G.(2005).CRISPRelementsinYersiniapestisacquirenewrepeatsbypreferentialuptakeofbacteriophageDNA,andprovideadditionaltoolsforevolutionarystudies.Microbiology151,653–663.doi:10.1099/mic.0.27437-0 PubMedAbstract|CrossRefFullText|GoogleScholar Puchta,H.(2005).Therepairofdouble-strandbreaksinplants:mechanismsandconsequencesforgenomeevolution.J.Exp.Bot.56,1–14.doi:10.1093/jxb/eri025 PubMedAbstract|CrossRefFullText|GoogleScholar Puchta,H.(2016).UsingCRISPR/Casinthreedimensions:towardssyntheticplantgenomes,transcriptomesandepigenomes.PlantJ.87,5–15.doi:10.1111/tpj.13100 PubMedAbstract|CrossRefFullText|GoogleScholar Puchta,H.(2017).ApplyingCRISPR/Casforgenomeengineeringinplants:thebestisyettocome.Curr.Opin.PlantBiol.36,1–8.doi:10.1016/j.pbi.2016.11.011 PubMedAbstract|CrossRefFullText|GoogleScholar Puchta,H.,andFauser,F.(2014).Syntheticnucleasesforgenomeengineeringinplants:prospectsforabrightfuture.PlantJ.CellMol.Biol.78,727–741.doi:10.1111/tpj.12338 PubMedAbstract|CrossRefFullText|GoogleScholar Pyott,D.E.,Sheehan,E.,andMolnar,A.(2016).EngineeringofCRISPR/Cas9-mediatedpotyvirusresistanceintransgene-freeArabidopsisplants.Mol.PlantPathol.17,1276–1288.doi:10.1111/mpp.12417 PubMedAbstract|CrossRefFullText|GoogleScholar Qi,L.S.,Larson,M.H.,Gilbert,L.A.,Doudna,J.A.,Weissman,J.S.,Arkin,A.P.,etal.(2013).RepurposingCRISPRasanRNA-guidedplatformforsequence-specificcontrolofgeneexpression.Cell152,1173–1183.doi:10.1016/j.cell.2013.02.022 PubMedAbstract|CrossRefFullText|GoogleScholar Samai,P.,Pyenson,N.,Jiang,W.,Goldberg,G.W.,Hatoum-Aslan,A.,andMarraffini,L.A.(2015).Co-transcriptionalDNAandRNAcleavageduringtypeIIICRISPR–Casimmunity.Cell161,1164–1174.doi:10.1016/j.cell.2015.04.027 PubMedAbstract|CrossRefFullText|GoogleScholar Schaeffer,S.M.,andNakata,P.A.(2016).TheexpandingfootprintofCRISPR/Cas9intheplantsciences.PlantCellRep.35,1451–1468.doi:10.1007/s00299-016-1987-x PubMedAbstract|CrossRefFullText|GoogleScholar Senturk,S.,Shirole,N.H.,Nowak,D.D.,Corbo,V.,Pal,D.,Vaughan,A.,etal.(2015).ArapidandtunablemethodtotemporallycontrolCas9expressionenablestheidentificationofessentialgenesandtheinterrogationoffunctionalgeneinteractionsinvitroandinvivo.Nat.Commun.8,14370–14379.doi:10.1101/023366 CrossRefFullText|GoogleScholar Shalem,O.,Sanjana,N.E.,andZhang,F.(2015).High-throughputfunctionalgenomicsusingCRISPR-Cas9.Nat.Rev.Genet.16,299–311.doi:10.1038/nrg3899 PubMedAbstract|CrossRefFullText|GoogleScholar Shan,Q.,Wang,Y.,Li,J.,Zhang,Y.,Chen,K.,andLiang,Z.(2013).TargetedgenomemodificationofcropplantsusingaCRISPR-Cassystem.Nat.Biotechnol.31,686–688.doi:10.1038/nbt.2650 PubMedAbstract|CrossRefFullText|GoogleScholar Shi,J.,Gao,H.,Wang,H.,Lafitte,H.R.,Archibald,R.L.,Yang,M.,etal.(2017).ARGOS8variantsgeneratedbyCRISPR-Cas9improvemaizegrainyieldunderfielddroughtstressconditions.PlantBiotechnol.J.16,299–311.doi:10.1111/pbi.12603 PubMedAbstract|CrossRefFullText|GoogleScholar Shmakov,S.,Abudayyeh,O.O.,Makarova,K.S.,Wolf,Y.I.,Gootenberg,J.S.,Semenova,E.,etal.(2015).Discoveryandfunctionalcharacterizationofdiverseclass2CRISPR/Cassystems.Mol.Cell60,385–397.doi:10.1016/j.molcel.2015.10.008 PubMedAbstract|CrossRefFullText|GoogleScholar Sikora,P.,Chawade,A.,Larsson,M.,Olsson,J.,andOlsson,O.(2011).Mutagenesisasatoolinplantgenetics,functionalgenomics,andbreeding.Int.J.PlantGenomics2011,142–153.doi:10.1155/2011/314829 PubMedAbstract|CrossRefFullText|GoogleScholar Steinert,J.,Schiml,S.,andPuchta,H.(2016).Homology-baseddouble-strandbreak-inducedgenomeengineeringinplants.PlantCellRep.35,1429–1438.doi:10.1007/s00299-016-1981-3 PubMedAbstract|CrossRefFullText|GoogleScholar Subburaj,S.,Chung,S.J.,Lee,C.,Ryu,S.M.,Kim,D.H.,Kim,J.S.,etal.(2016).Site-directedmutaGenesisinPetunia9hybridaprotoplastsystemusingdirectdeliveryofpurifiedrecombinantCas9ribonucleoproteins.PlantCellRep.35,1535–1544.doi:10.1007/s00299-016-1937-7 PubMedAbstract|CrossRefFullText|GoogleScholar Sugano,S.S.,Shirakawa,M.,Takagi,J.,Matsuda,Y.,Shimada,T.,andHara-Nishimura,I.(2014).CRISPR/Cas9-mediatedtargetedmutagenesisintheliverwortMarchantiapolymorphaL.PlantCellPhysiol.55,475–481.doi:10.1093/pcp/pcu014 PubMedAbstract|CrossRefFullText|GoogleScholar Svitashev,S.,Young,J.K.,Schwartz,C.,Gao,H.,Falco,S.C.,andCigan,A.M.(2016).Targetedmutagenesis,precisegeneediting,andsite-specificgeneinsertioninmaizeusingCas9andguideRNA.PlantPhysiol.169,931–945.doi:10.1104/pp.15.00793 PubMedAbstract|CrossRefFullText|GoogleScholar Tadege,M.,Wen,J.Q.,He,J.,Tu,H.D.,Kwak,Y.,andEschstruth,A.(2008).Large-scaleinsertionalmutagenesisusingtheTnt1retrotransposoninthemodellegumeM.truncatula.PlantJ.54,335–347.doi:10.1111/j.1365-313X.2008.03418.x PubMedAbstract|CrossRefFullText|GoogleScholar Tang,T.H.,Bachellerie,J.P.,Rozhdestvensky,T.,Bortolin,M.L.,Huber,H.,Drungowski,M.,etal.(2002).Identificationof86candidatesforsmallnon-messengerRNAsfromthearchaeonArchaeoglobusfulgidus.Proc.Natl.Acad.Sci.U.S.A.99,7536–7541.doi:10.1073/pnas.112047299 PubMedAbstract|CrossRefFullText|GoogleScholar Tieman,D.,Zhu,G.,Resende,MFJr,Lin,T.,Nguyen,C.,Bies,D.,etal.(2017).Achemicalgeneticroadmaptoimprovedtomatoflavor.Science355,391–394.doi:10.1126/science.aal1556 PubMedAbstract|CrossRefFullText|GoogleScholar Tsai,S.Q.,Wyvekens,N.,Khayter,C.,Foden,J.A.,andThapar,V.(2014).DimericCRISPRRNA-guidedFokInucleasesforhighlyspecificgenomeediting.Nat.Biotechnol.32,569–576.doi:10.1038/nbt.2908 PubMedAbstract|CrossRefFullText|GoogleScholar Tsai,S.Q.,Zheng,Z.,Nguyen,N.T.,Liebers,M.,Topkar,V.V.,Thapar,V.,etal.(2015).GUIDE-seqenablesgenome-wideprofilingofoff-targetcleavagebyCRISPR-Casnucleases.Nat.Biotechnol.33,187–197.doi:10.1038/nbt.3117 PubMedAbstract|CrossRefFullText|GoogleScholar Tsutsui,H.,andHigashiyama,T.(2017).pKAMA-ITACHIvectorsforhighlyefficientCRISPR/Cas9-mediatedgeneknockoutinArabidopsisthaliana.PlantCellPhysiol.58,46–56.doi:10.1093/pcp/pcw191 PubMedAbstract|CrossRefFullText|GoogleScholar Vazquez-Vilar,M.,Bernabe-Orts,J.M.,Fernandez-Del-Carmen,A.,Ziarsolo,P.,Blanca,J.,andGranell,A.(2016).AmodulartoolboxforgRNA-Cas9genomeengineeringinplantsbasedonthegoldenbraidstandard.PlantMethods12,10–21.doi:10.1186/s13007-016-0101-2 PubMedAbstract|CrossRefFullText|GoogleScholar Waltz,E.(2016).Gene-editedCRISPRmushroomescapesUSregulation.Nature532,293.doi:10.1038/nature.2016.19754 PubMedAbstract|CrossRefFullText|GoogleScholar Wang,F.,Wang,C.,Liu,P.,Lei,C.,Hao,W.,Gao,Y.,etal.(2016).EnhancedriceblastresistancebyCRISPR/Cas9-targetedmutagenesisoftheERFtranscriptionfactorgeneOsERF922.PLOSONE11:e0154027.doi:10.1371/journal.pone.0154027 PubMedAbstract|CrossRefFullText|GoogleScholar Wang,Y.,Cheng,X.,Shan,Q.,Zhang,Y.,Liu,J.,andGao,C.(2014).Simultaneouseditingofthreehomoeoallelesinhexaploidbreadwheatconfersheritableresistancetopowderymildew.Nat.Biotechnol.32,947–951.doi:10.1038/nbt.2969 PubMedAbstract|CrossRefFullText|GoogleScholar Woo,J.W.,Kim,J.,Kwon,S.I.,Corvalan,C.,Cho,S.W.,Kim,H.,etal.(2015).DNA-freegenomeeditinginplantswithpreassembledCRISPR-Cas9ribonucleoproteins.Nat.Biotechnol.33,1162–1164.doi:10.1038/nbt.3389 PubMedAbstract|CrossRefFullText|GoogleScholar Xie,K.,Minkenberg,B.,andYang,Y.(2015).BoostingCRISPR/Cas9multiplexeditingcapabilitywiththeendogenoustRNA-processingsystem.Proc.Natl.Acad.Sci.U.S.A.112,3570–3585.doi:10.1073/pnas.1420294112 PubMedAbstract|CrossRefFullText|GoogleScholar Xie,K.,andYang,Y.(2013).RNA-guidedgenomeeditinginplantsusingaCRISPR/Cassystem.Mol.Plant6,1975–1983.doi:10.1093/mp/sst119 PubMedAbstract|CrossRefFullText|GoogleScholar Xie,K.,Zhang,J.,andYang,Y.(2014).Genome-widepredictionofhighlyspecificguideRNAspacersfortheCRISPR/Cas9mediatedgenomeeditinginmodelplantsandmajorcrops.Mol.Plant7,923–926.doi:10.1093/mp/ssu009 PubMedAbstract|CrossRefFullText|GoogleScholar Xing,H.L.,Dong,L.,Wang,Z.P.,Zhang,H.Y.,Han,C.Y.,andLiu,B.(2014).ACRISPR/Cas9toolkitformultiplexgenomeeditinginplants.BMCPlantBiol.14:327.doi:10.1186/s12870-014-0327-y PubMedAbstract|CrossRefFullText|GoogleScholar Xu,T.,Li,Y.,Nostrand,J.D.V.,He,Z.,andZhou,J.(2014).Cas9-basedtoolsfortargetedgenomeeditingandtranscriptionalcontrol.Appl.Environ.Microbiol.80,1544–1552.doi:10.1128/AEM.03786-13 PubMedAbstract|CrossRefFullText|GoogleScholar Yang,X.(2015).ApplicationsofCRISPR-Cas9mediatedgenomeengineering.Mil.Med.Res.2,11–16.doi:10.1186/s40779-015-0038-1 PubMedAbstract|CrossRefFullText|GoogleScholar Yosef,I.,Goren,M.G.,andQimron,U.(2012).ProteinsandDNAelementsessentialfortheCRISPRadaptationprocessinEscherichiacoli.NucleicAcidsRes.40,5569–5576.doi:10.1093/nar/gks216 PubMedAbstract|CrossRefFullText|GoogleScholar Zetsche,B.,Gootenberg,J.S.,Abudayyeh,O.O.,Slaymaker,I.M.,Makarova,K.S.,Essletzbichler,P.,etal.(2015a).Cpf1isasingleRNA-guidedendonucleaseofaclass2CRISPR/Cassystem.Cell163,759–771.doi:10.1016/j.cell.2015.09.038 PubMedAbstract|CrossRefFullText|GoogleScholar Zetsche,B.,Volz,S.E.,andZhang,F.(2015b).ASplit-Cas9architectureforinduciblegenomeeditingandtranscriptionmodulation.Nat.Biotechnol.33,139–142.doi:10.1038/nbt.3149 PubMedAbstract|CrossRefFullText|GoogleScholar Zhang,H.,Zhang,J.,Wei,P.,Zhang,B.,Gou,F.,Feng,Z.,etal.(2014).TheCRISPR/Cas9systemproducesspecificandhomozygoustargetedgeneeditinginriceinonegeneration.PlantBiotechnol.J.12,797–807.doi:10.1111/pbi.12200 PubMedAbstract|CrossRefFullText|GoogleScholar Zhang,K.,Raboanatahiry,N.,Zhu,B.,andLi,M.(2017).Progressingenomeeditingtechnologyanditsapplicationinplants.Front.PlantSci.8:177.doi:10.3389/fpls.2017.00177 PubMedAbstract|CrossRefFullText|GoogleScholar Zhou,H.,Liu,B.,Weeks,D.P.,Spalding,M.H.,andYang,B.(2014).LargechromosomaldeletionsandheritablesmallgeneticchangesinducedbyCRISPR/Cas9inrice.NucleicAcidsRes.42,10903–10914.doi:10.1093/nar/gku806 PubMedAbstract|CrossRefFullText|GoogleScholar Keywords:CRISPR/Cassystem,genomeediting,nutritionimprovement,diseaseresistance,metabolicengineering,geneexpressionregulation,CRISPRribonucleoproteins Citation:AroraLandNarulaA(2017)GeneEditingandCropImprovementUsingCRISPR-Cas9System.Front.PlantSci.8:1932.doi:10.3389/fpls.2017.01932 Received:31July2017;Accepted:25October2017;Published:08November2017. Editedby: ManojK.Sharma,JawaharlalNehruUniversity,India Reviewedby: ElenaKhlestkina,InstituteofCytologyandGenetics(RAS),Russia KaijunZhao,ChineseAcademyofAgriculturalSciences,China XiaoouDong,UniversityofCalifornia,Davis,UnitedStates Copyright©2017AroraandNarula.Thisisanopen-accessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(CCBY).Theuse,distributionorreproductioninotherforumsispermitted,providedtheoriginalauthor(s)orlicensorarecreditedandthattheoriginalpublicationinthisjournaliscited,inaccordancewithacceptedacademicpractice.Nouse,distributionorreproductionispermittedwhichdoesnotcomplywiththeseterms. *Correspondence:AlkaNarula,[email protected] Peoplealsolookedat Download



請為這篇文章評分?