Ecosystem - Wikipedia
文章推薦指數: 80 %
Definition. An ecosystem (or ecological system) consists of all the organisms and the abiotic pools (or physical environment) with which they interact. Ecosystem FromWikipedia,thefreeencyclopedia Jumptonavigation Jumptosearch Communityoflivingorganismstogetherwiththenonlivingcomponentsoftheirenvironment Thisarticleisaboutnaturalecosystems.Forthetermusedinman-madesystems,seeDigitalecosystem.Forthesystemofclassifyingecologicallyhomogeneouslandunits,seeBiome. "Biosystem"redirectshere.Forthejournal,seeBioSystems. Left:Coralreefecosystemsarehighlyproductivemarinesystems.[1]Right:Temperaterainforest,aterrestrialecosystem. PartofaseriesonBiologyScienceoflife Index Outline Glossary History(timeline) Keycomponents Celltheory Ecosystem Evolution Phylogeny Propertiesoflife Adaptation Energyprocessing Growth Order Regulation Reproduction Responsetoenvironment DomainsandKingdomsoflife Archaea Bacteria Eukarya(Animals,Fungi,Plants,Protists) Branches Anatomy Biotechnology Botany Cellbiology Ecology Evolutionarybiology Genetics Marinebiology Microbiology Molecularbiology Mycology Neuroscience Paleontology Phycology Physiology Protistology Virology Zoology Research Biologist(list) Listofbiologyawards Listofjournals Listofresearchmethods Listofunsolvedproblems Applications Agriculturalscience Biomedicalsciences Healthtechnology Pharming Biologyportal Categoryvte Anecosystem(orecologicalsystem)consistsofalltheorganismsandthephysicalenvironmentwithwhichtheyinteract.[2]: 458 Thesebioticandabioticcomponentsarelinkedtogetherthroughnutrientcyclesandenergyflows.Energyentersthesystemthroughphotosynthesisandisincorporatedintoplanttissue.Byfeedingonplantsandononeanother,animalsplayanimportantroleinthemovementofmatterandenergythroughthesystem.Theyalsoinfluencethequantityofplantandmicrobialbiomasspresent.Bybreakingdowndeadorganicmatter,decomposersreleasecarbonbacktotheatmosphereandfacilitatenutrientcyclingbyconvertingnutrientsstoredindeadbiomassbacktoaformthatcanbereadilyusedbyplantsandmicrobes. Ecosystemsarecontrolledbyexternalandinternalfactors.Externalfactorssuchasclimate,parentmaterialwhichformsthesoilandtopography,controltheoverallstructureofanecosystembutarenotthemselvesinfluencedbytheecosystem.Internalfactorsarecontrolled,forexample,bydecomposition,rootcompetition,shading,disturbance,succession,andthetypesofspeciespresent.Whiletheresourceinputsaregenerallycontrolledbyexternalprocesses,theavailabilityoftheseresourceswithintheecosystemiscontrolledbyinternalfactors.Therefore,internalfactorsnotonlycontrolecosystemprocessesbutarealsocontrolledbythem. Ecosystemsaredynamicentities—theyaresubjecttoperiodicdisturbancesandarealwaysintheprocessofrecoveringfromsomepastdisturbance.Thetendencyofanecosystemtoremainclosetoitsequilibriumstate,despitethatdisturbance,istermeditsresistance.Thecapacityofasystemtoabsorbdisturbanceandreorganizewhileundergoingchangesoastoretainessentiallythesamefunction,structure,identity,andfeedbacksistermeditsecologicalresilience.Ecosystemscanbestudiedthroughavarietyofapproaches—theoreticalstudies,studiesmonitoringspecificecosystemsoverlongperiodsoftime,thosethatlookatdifferencesbetweenecosystemstoelucidatehowtheyworkanddirectmanipulativeexperimentation.Biomesaregeneralclassesorcategoriesofecosystems.However,thereisnocleardistinctionbetweenbiomesandecosystems.Ecosystemclassificationsarespecifickindsofecologicalclassificationsthatconsiderallfourelementsofthedefinitionofecosystems:abioticcomponent,anabioticcomplex,theinteractionsbetweenandwithinthem,andthephysicalspacetheyoccupy. Ecosystemsprovideavarietyofgoodsandservicesuponwhichpeopledepend.Ecosystemgoodsincludethe"tangible,materialproducts"ofecosystemprocessessuchaswater,food,fuel,constructionmaterial,andmedicinalplants.Ecosystemservices,ontheotherhand,aregenerally"improvementsintheconditionorlocationofthingsofvalue".Theseincludethingslikethemaintenanceofhydrologicalcycles,cleaningairandwater,themaintenanceofoxygenintheatmosphere,croppollinationandeventhingslikebeauty,inspirationandopportunitiesforresearch.Manyecosystemsbecomedegradedthroughhumanimpacts,suchassoilloss,airandwaterpollution,habitatfragmentation,waterdiversion,firesuppression,andintroducedspeciesandinvasivespecies.Thesethreatscanleadtoabrupttransformationoftheecosystemortogradualdisruptionofbioticprocessesanddegradationofabioticconditionsoftheecosystem.Oncetheoriginalecosystemhaslostitsdefiningfeatures,itisconsidered"collapsed".Ecosystemrestorationisthoughttocontributetoall17SustainableDevelopmentGoals. Contents 1Definition 1.1Originanddevelopmentoftheterm 2Ecosystemprocesses 2.1Externalandinternalfactors 2.2Primaryproduction 2.3Energyflow 2.4Decomposition 2.4.1Decompositionrates 2.5Dynamicsandresilience 2.6Nutrientcycling 2.7Functionandbiodiversity 3Studyapproaches 3.1Ecosystemecology 3.2Classifications 3.3Examples 4Humaninteractionswithecosystems 4.1Ecosystemgoodsandservices 4.2Ecosystemdegradationanddecline 4.3Ecosystemmanagement 4.4Ecosystemrestorationandsustainabledevelopment 5Seealso 6References 6.1Notes Definition Anecosystem(orecologicalsystem)consistsofalltheorganismsandtheabioticpools(orphysicalenvironment)withwhichtheyinteract.[3][4]: 5 [2]: 458 Thebioticandabioticcomponentsarelinkedtogetherthroughnutrientcyclesandenergyflows.[5] "Ecosystemprocesses"arethetransfersofenergyandmaterialsfromonepooltoanother.[2]: 458 Ecosystemprocessesareknownto"takeplaceatawiderangeofscales".Therefore,thecorrectscaleofstudydependsonthequestionasked.[4]: 5 Originanddevelopmentoftheterm Theterm"ecosystem"wasfirstusedin1935inapublicationbyBritishecologistArthurTansley.ThetermwascoinedbyArthurRoyClapham,whocameupwiththewordatTansley'srequest.[6]Tansleydevisedtheconcepttodrawattentiontotheimportanceoftransfersofmaterialsbetweenorganismsandtheirenvironment.[4]: 9 Helaterrefinedtheterm,describingitas"Thewholesystem,...includingnotonlytheorganism-complex,butalsothewholecomplexofphysicalfactorsformingwhatwecalltheenvironment".[3]Tansleyregardedecosystemsnotsimplyasnaturalunits,butas"mentalisolates".[3]Tansleylaterdefinedthespatialextentofecosystemsusingtheterm"ecotope".[7] G.EvelynHutchinson,alimnologistwhowasacontemporaryofTansley's,combinedCharlesElton'sideasabouttrophicecologywiththoseofRussiangeochemistVladimirVernadsky.Asaresult,hesuggestedthatmineralnutrientavailabilityinalakelimitedalgalproduction.Thiswould,inturn,limittheabundanceofanimalsthatfeedonalgae.RaymondLindemantooktheseideasfurthertosuggestthattheflowofenergythroughalakewastheprimarydriveroftheecosystem.Hutchinson'sstudents,brothersHowardT.OdumandEugeneP.Odum,furtherdevelopeda"systemsapproach"tothestudyofecosystems.Thisallowedthemtostudytheflowofenergyandmaterialthroughecologicalsystems.[4]: 9 Ecosystemprocesses Rainforestecosystemsarerichinbiodiversity.ThisistheGambiaRiverinSenegal'sNiokolo-KobaNationalPark. FloraofBajaCaliforniaDesert,Cataviñaregion,Mexico Externalandinternalfactors Ecosystemsarecontrolledbybothexternalandinternalfactors.Externalfactors,alsocalledstatefactors,controltheoverallstructureofanecosystemandthewaythingsworkwithinit,butarenotthemselvesinfluencedbytheecosystem.Onbroadgeographicscales,climateisthefactorthat"moststronglydeterminesecosystemprocessesandstructure".[4]: 14 Climatedeterminesthebiomeinwhichtheecosystemisembedded.Rainfallpatternsandseasonaltemperaturesinfluencephotosynthesisandtherebydeterminetheamountofenergyavailabletotheecosystem.[8]: 145 Parentmaterialdeterminesthenatureofthesoilinanecosystem,andinfluencesthesupplyofmineralnutrients.Topographyalsocontrolsecosystemprocessesbyaffectingthingslikemicroclimate,soildevelopmentandthemovementofwaterthroughasystem.Forexample,ecosystemscanbequitedifferentifsituatedinasmalldepressiononthelandscape,versusonepresentonanadjacentsteephillside.[9]: 39 [10]: 66 Otherexternalfactorsthatplayanimportantroleinecosystemfunctioningincludetimeandpotentialbiota,theorganismsthatarepresentinaregionandcouldpotentiallyoccupyaparticularsite.Ecosystemsinsimilarenvironmentsthatarelocatedindifferentpartsoftheworldcanendupdoingthingsverydifferentlysimplybecausetheyhavedifferentpoolsofspeciespresent.[11]: 321 Theintroductionofnon-nativespeciescancausesubstantialshiftsinecosystemfunction.[12] Unlikeexternalfactors,internalfactorsinecosystemsnotonlycontrolecosystemprocessesbutarealsocontrolledbythem.[4]: 16 Whiletheresourceinputsaregenerallycontrolledbyexternalprocesseslikeclimateandparentmaterial,theavailabilityoftheseresourceswithintheecosystemiscontrolledbyinternalfactorslikedecomposition,rootcompetitionorshading.[13]Otherfactorslikedisturbance,successionorthetypesofspeciespresentarealsointernalfactors. Primaryproduction Globaloceanicandterrestrialphototrophabundance,fromSeptember1997toAugust2000.Asanestimateofautotrophbiomass,itisonlyaroughindicatorofprimaryproductionpotentialandnotanactualestimateofit. Mainarticle:Primaryproduction Primaryproductionistheproductionoforganicmatterfrominorganiccarbonsources.Thismainlyoccursthroughphotosynthesis.Theenergyincorporatedthroughthisprocesssupportslifeonearth,whilethecarbonmakesupmuchoftheorganicmatterinlivinganddeadbiomass,soilcarbonandfossilfuels.Italsodrivesthecarboncycle,whichinfluencesglobalclimateviathegreenhouseeffect. Throughtheprocessofphotosynthesis,plantscaptureenergyfromlightanduseittocombinecarbondioxideandwatertoproducecarbohydratesandoxygen.Thephotosynthesiscarriedoutbyalltheplantsinanecosystemiscalledthegrossprimaryproduction(GPP).[8]: 124 AbouthalfofthegrossGPPisrespiredbyplantsinordertoprovidetheenergythatsupportstheirgrowthandmaintenance.[14]: 157 Theremainder,thatportionofGPPthatisnotusedupbyrespiration,isknownasthenetprimaryproduction(NPP).[14]: 157 Totalphotosynthesisislimitedbyarangeofenvironmentalfactors.Theseincludetheamountoflightavailable,theamountofleafareaaplanthastocapturelight(shadingbyotherplantsisamajorlimitationofphotosynthesis),therateatwhichcarbondioxidecanbesuppliedtothechloroplaststosupportphotosynthesis,theavailabilityofwater,andtheavailabilityofsuitabletemperaturesforcarryingoutphotosynthesis.[8]: 155 Energyflow Mainarticle:Energyflow(ecology) Seealso:FoodwebandTrophiclevel Energyandcarbonenterecosystemsthroughphotosynthesis,areincorporatedintolivingtissue,transferredtootherorganismsthatfeedonthelivinganddeadplantmatter,andeventuallyreleasedthroughrespiration.[14]: 157 Thecarbonandenergyincorporatedintoplanttissues(netprimaryproduction)iseitherconsumedbyanimalswhiletheplantisalive,oritremainsuneatenwhentheplanttissuediesandbecomesdetritus.Interrestrialecosystems,thevastmajorityofthenetprimaryproductionendsupbeingbrokendownbydecomposers.Theremainderisconsumedbyanimalswhilestillaliveandenterstheplant-basedtrophicsystem.Afterplantsandanimalsdie,theorganicmattercontainedinthementersthedetritus-basedtrophicsystem.[15] Ecosystemrespirationisthesumofrespirationbyalllivingorganisms(plants,animals,anddecomposers)intheecosystem.[16]Netecosystemproductionisthedifferencebetweengrossprimaryproduction(GPP)andecosystemrespiration.[17]Intheabsenceofdisturbance,netecosystemproductionisequivalenttothenetcarbonaccumulationintheecosystem. Energycanalsobereleasedfromanecosystemthroughdisturbancessuchaswildfireortransferredtootherecosystems(e.g.,fromaforesttoastreamtoalake)byerosion. Inaquaticsystems,theproportionofplantbiomassthatgetsconsumedbyherbivoresismuchhigherthaninterrestrialsystems.[15]Introphicsystems,photosyntheticorganismsaretheprimaryproducers.Theorganismsthatconsumetheirtissuesarecalledprimaryconsumersorsecondaryproducers—herbivores.Organismswhichfeedonmicrobes(bacteriaandfungi)aretermedmicrobivores.Animalsthatfeedonprimaryconsumers—carnivores—aresecondaryconsumers.Eachoftheseconstitutesatrophiclevel.[15] Thesequenceofconsumption—fromplanttoherbivore,tocarnivore—formsafoodchain.Realsystemsaremuchmorecomplexthanthis—organismswillgenerallyfeedonmorethanoneformoffood,andmayfeedatmorethanonetrophiclevel.Carnivoresmaycapturesomepreythatispartofaplant-basedtrophicsystemandothersthatarepartofadetritus-basedtrophicsystem(abirdthatfeedsbothonherbivorousgrasshoppersandearthworms,whichconsumedetritus).Realsystems,withallthesecomplexities,formfoodwebsratherthanfoodchains.[15] Decomposition Seealso:Decomposition Sequenceofadecomposingpigcarcassovertime. Thecarbonandnutrientsindeadorganicmatterarebrokendownbyagroupofprocessesknownasdecomposition.Thisreleasesnutrientsthatcanthenbere-usedforplantandmicrobialproductionandreturnscarbondioxidetotheatmosphere(orwater)whereitcanbeusedforphotosynthesis.Intheabsenceofdecomposition,thedeadorganicmatterwouldaccumulateinanecosystem,andnutrientsandatmosphericcarbondioxidewouldbedepleted.[18]: 183 Decompositionprocessescanbeseparatedintothreecategories—leaching,fragmentationandchemicalalterationofdeadmaterial.Aswatermovesthroughdeadorganicmatter,itdissolvesandcarrieswithitthewater-solublecomponents.Thesearethentakenupbyorganismsinthesoil,reactwithmineralsoil,oraretransportedbeyondtheconfinesoftheecosystem(andareconsideredlosttoit).[19]: 271–280 Newlyshedleavesandnewlydeadanimalshavehighconcentrationsofwater-solublecomponentsandincludesugars,aminoacidsandmineralnutrients.Leachingismoreimportantinwetenvironmentsandlessimportantindryones.[10]: 69–77 Fragmentationprocessesbreakorganicmaterialintosmallerpieces,exposingnewsurfacesforcolonizationbymicrobes.Freshlyshedleaflittermaybeinaccessibleduetoanouterlayerofcuticleorbark,andcellcontentsareprotectedbyacellwall.Newlydeadanimalsmaybecoveredbyanexoskeleton.Fragmentationprocesses,whichbreakthroughtheseprotectivelayers,acceleratetherateofmicrobialdecomposition.[18]: 184 Animalsfragmentdetritusastheyhuntforfood,asdoespassagethroughthegut.Freeze-thawcyclesandcyclesofwettinganddryingalsofragmentdeadmaterial.[18]: 186 Thechemicalalterationofthedeadorganicmatterisprimarilyachievedthroughbacterialandfungalaction.Fungalhyphaeproduceenzymesthatcanbreakthroughthetoughouterstructuressurroundingdeadplantmaterial.Theyalsoproduceenzymesthatbreakdownlignin,whichallowsthemaccesstobothcellcontentsandthenitrogeninthelignin.Fungicantransfercarbonandnitrogenthroughtheirhyphalnetworksandthus,unlikebacteria,arenotdependentsolelyonlocallyavailableresources.[18]: 186 Decompositionrates Decompositionratesvaryamongecosystems.[20]Therateofdecompositionisgovernedbythreesetsoffactors—thephysicalenvironment(temperature,moisture,andsoilproperties),thequantityandqualityofthedeadmaterialavailabletodecomposers,andthenatureofthemicrobialcommunityitself.[18]: 194 Temperaturecontrolstherateofmicrobialrespiration;thehigherthetemperature,thefasterthemicrobialdecompositionoccurs.Temperaturealsoaffectssoilmoisture,whichaffectsdecomposition.Freeze-thawcyclesalsoaffectdecomposition—freezingtemperatureskillsoilmicroorganisms,whichallowsleachingtoplayamoreimportantroleinmovingnutrientsaround.Thiscanbeespeciallyimportantasthesoilthawsinthespring,creatingapulseofnutrientsthatbecomeavailable.[19]: 280 Decompositionratesarelowunderverywetorverydryconditions.Decompositionratesarehighestinwet,moistconditionswithadequatelevelsofoxygen.Wetsoilstendtobecomedeficientinoxygen(thisisespeciallytrueinwetlands),whichslowsmicrobialgrowth.Indrysoils,decompositionslowsaswell,butbacteriacontinuetogrow(albeitataslowerrate)evenaftersoilsbecometoodrytosupportplantgrowth.[18]: 200 Dynamicsandresilience Furtherinformation:Resistance(ecology)andEcologicalresilience Ecosystemsaredynamicentities.Theyaresubjecttoperiodicdisturbancesandarealwaysintheprocessofrecoveringfrompastdisturbances.[21]: 347 Whenaperturbationoccurs,anecosystemrespondsbymovingawayfromitsinitialstate.Thetendencyofanecosystemtoremainclosetoitsequilibriumstate,despitethatdisturbance,istermeditsresistance.Thecapacityofasystemtoabsorbdisturbanceandreorganizewhileundergoingchangesoastoretainessentiallythesamefunction,structure,identity,andfeedbacksistermeditsecologicalresilience.[22][23]Resiliencethinkingalsoincludeshumanityasanintegralpartofthebiospherewherewearedependentonecosystemservicesforoursurvivalandmustbuildandmaintaintheirnaturalcapacitiestowithstandshocksanddisturbances.[24]Timeplaysacentralroleoverawiderange,forexample,intheslowdevelopmentofsoilfrombarerockandthefasterrecoveryofacommunityfromdisturbance.[14]: 67 Disturbancealsoplaysanimportantroleinecologicalprocesses.F.StuartChapinandcoauthorsdefinedisturbanceas"arelativelydiscreteeventintimethatremovesplantbiomass".[21]: 346 Thiscanrangefromherbivoreoutbreaks,treefalls,fires,hurricanes,floods,glacialadvances,tovolcaniceruptions.Suchdisturbancescancauselargechangesinplant,animalandmicrobepopulations,aswellassoilorganicmattercontent.Disturbanceisfollowedbysuccession,a"directionalchangeinecosystemstructureandfunctioningresultingfrombioticallydrivenchangesinresourcesupply."[2]: 470 Thefrequencyandseverityofdisturbancedeterminethewayitaffectsecosystemfunction.Amajordisturbancelikeavolcaniceruptionorglacialadvanceandretreatleavebehindsoilsthatlackplants,animalsororganicmatter.Ecosystemsthatexperiencesuchdisturbancesundergoprimarysuccession.Alessseveredisturbancelikeforestfires,hurricanesorcultivationresultinsecondarysuccessionandafasterrecovery.[21]: 348 Moresevereandmorefrequentdisturbanceresultinlongerrecoverytimes. Fromoneyeartoanother,ecosystemsexperiencevariationintheirbioticandabioticenvironments.Adrought,acolderthanusualwinter,andapestoutbreakallareshort-termvariabilityinenvironmentalconditions.Animalpopulationsvaryfromyeartoyear,buildingupduringresource-richperiodsandcrashingastheyovershoottheirfoodsupply.Longer-termchangesalsoshapeecosystemprocesses.Forexample,theforestsofeasternNorthAmericastillshowlegaciesofcultivationwhichceasedin1850whenlargeareaswererevertedtoforests.[21]: 340 AnotherexampleisthemethaneproductionineasternSiberianlakesthatiscontrolledbyorganicmatterwhichaccumulatedduringthePleistocene.[25] AfreshwaterlakeinGranCanaria,anislandoftheCanaryIslands.Clearboundariesmakelakesconvenienttostudyusinganecosystemapproach. Nutrientcycling Seealso:Nutrientcycle,Biogeochemicalcycle,andNitrogencycle Biologicalnitrogencycling Ecosystemscontinuallyexchangeenergyandcarbonwiththewiderenvironment.Mineralnutrients,ontheotherhand,aremostlycycledbackandforthbetweenplants,animals,microbesandthesoil.Mostnitrogenentersecosystemsthroughbiologicalnitrogenfixation,isdepositedthroughprecipitation,dust,gasesorisappliedasfertilizer.[19]: 266 Mostterrestrialecosystemsarenitrogen-limitedintheshorttermmakingnitrogencyclinganimportantcontrolonecosystemproduction.[19]: 289 Overthelongterm,phosphorusavailabilitycanalsobecritical.[26] Macronutrientswhicharerequiredbyallplantsinlargequantitiesincludetheprimarynutrients(whicharemostlimitingastheyareusedinlargestamounts):Nitrogen,phosphorus,potassium.[27]: 231 Secondarymajornutrients(lessoftenlimiting)include:Calcium,magnesium,sulfur.Micronutrientsrequiredbyallplantsinsmallquantitiesincludeboron,chloride,copper,iron,manganese,molybdenum,zinc.Finally,therearealsobeneficialnutrientswhichmayberequiredbycertainplantsorbyplantsunderspecificenvironmentalconditions:aluminum,cobalt,iodine,nickel,selenium,silicon,sodium,vanadium.[27]: 231 Untilmoderntimes,nitrogenfixationwasthemajorsourceofnitrogenforecosystems.Nitrogen-fixingbacteriaeitherlivesymbioticallywithplantsorlivefreelyinthesoil.Theenergeticcostishighforplantsthatsupportnitrogen-fixingsymbionts—asmuchas25%ofgrossprimaryproductionwhenmeasuredincontrolledconditions.Manymembersofthelegumeplantfamilysupportnitrogen-fixingsymbionts.Somecyanobacteriaarealsocapableofnitrogenfixation.Thesearephototrophs,whichcarryoutphotosynthesis.Likeothernitrogen-fixingbacteria,theycaneitherbefree-livingorhavesymbioticrelationshipswithplants.[21]: 360 Othersourcesofnitrogenincludeaciddepositionproducedthroughthecombustionoffossilfuels,ammoniagaswhichevaporatesfromagriculturalfieldswhichhavehadfertilizersappliedtothem,anddust.[19]: 270 Anthropogenicnitrogeninputsaccountforabout80%ofallnitrogenfluxesinecosystems.[19]: 270 Whenplanttissuesareshedorareeaten,thenitrogeninthosetissuesbecomesavailabletoanimalsandmicrobes.Microbialdecompositionreleasesnitrogencompoundsfromdeadorganicmatterinthesoil,whereplants,fungi,andbacteriacompeteforit.Somesoilbacteriauseorganicnitrogen-containingcompoundsasasourceofcarbon,andreleaseammoniumionsintothesoil.Thisprocessisknownasnitrogenmineralization.Othersconvertammoniumtonitriteandnitrateions,aprocessknownasnitrification.Nitricoxideandnitrousoxidearealsoproducedduringnitrification.[19]: 277 Undernitrogen-richandoxygen-poorconditions,nitratesandnitritesareconvertedtonitrogengas,aprocessknownasdenitrification.[19]: 281 Mycorrhizalfungiwhicharesymbioticwithplantroots,usecarbohydratessuppliedbytheplantsandinreturntransferphosphorusandnitrogencompoundsbacktotheplantroots.[28][29]Thisisanimportantpathwayoforganicnitrogentransferfromdeadorganicmattertoplants.Thismechanismmaycontributetomorethan70Tgofannuallyassimilatedplantnitrogen,therebyplayingacriticalroleinglobalnutrientcyclingandecosystemfunction.[29] Phosphorusentersecosystemsthroughweathering.Asecosystemsagethissupplydiminishes,makingphosphorus-limitationmorecommoninolderlandscapes(especiallyinthetropics).[19]: 287–290 Calciumandsulfurarealsoproducedbyweathering,butaciddepositionisanimportantsourceofsulfurinmanyecosystems.Althoughmagnesiumandmanganeseareproducedbyweathering,exchangesbetweensoilorganicmatterandlivingcellsaccountforasignificantportionofecosystemfluxes.Potassiumisprimarilycycledbetweenlivingcellsandsoilorganicmatter.[19]: 291 Functionandbiodiversity Mainarticle:BiodiversitySeealso:Ecosystemdiversity LochLomondinScotlandformsarelativelyisolatedecosystem.Thefishcommunityofthislakehasremainedstableoveralongperioduntilanumberofintroductionsinthe1970srestructureditsfoodweb.[30] SpinyforestatIfaty,Madagascar,featuringvariousAdansonia(baobab)species,Alluaudiaprocera(Madagascarocotillo)andothervegetation. Biodiversityplaysanimportantroleinecosystemfunctioning.[31]: 449–453 Ecosystemprocessesaredrivenbythespeciesinanecosystem,thenatureoftheindividualspecies,andtherelativeabundanceoforganismsamongthesespecies.Ecosystemprocessesaretheneteffectoftheactionsofindividualorganismsastheyinteractwiththeirenvironment.Ecologicaltheorysuggeststhatinordertocoexist,speciesmusthavesomeleveloflimitingsimilarity—theymustbedifferentfromoneanotherinsomefundamentalway,otherwise,onespecieswouldcompetitivelyexcludetheother.[32]Despitethis,thecumulativeeffectofadditionalspeciesinanecosystemisnotlinear:additionalspeciesmayenhancenitrogenretention,forexample.However,beyondsomelevelofspeciesrichness,[11]: 331 additionalspeciesmayhavelittleadditiveeffectunlesstheydiffersubstantiallyfromspeciesalreadypresent.[11]: 324 Thisisthecaseforexampleforexoticspecies.[11]: 321 Theaddition(orloss)ofspeciesthatareecologicallysimilartothosealreadypresentinanecosystemtendstoonlyhaveasmalleffectonecosystemfunction.Ecologicallydistinctspecies,ontheotherhand,haveamuchlargereffect.Similarly,dominantspecieshavealargeeffectonecosystemfunction,whilerarespeciestendtohaveasmalleffect.Keystonespeciestendtohaveaneffectonecosystemfunctionthatisdisproportionatetotheirabundanceinanecosystem.[11]: 324 Anecosystemengineerisanyorganismthatcreates,significantlymodifies,maintainsordestroysahabitat.[33] Studyapproaches Ecosystemecology Mainarticle:Ecosystemecology Seealso:Ecosystemmodel Ahydrothermalventisanecosystemontheoceanfloor.(Thescalebaris1m.) Ecosystemecologyisthe"studyoftheinteractionsbetweenorganismsandtheirenvironmentasanintegratedsystem".[2]: 458 Thesizeofecosystemscanrangeuptotenordersofmagnitude,fromthesurfacelayersofrockstothesurfaceoftheplanet.[4]: 6 TheHubbardBrookEcosystemStudystartedin1963tostudytheWhiteMountainsinNewHampshire.Itwasthefirstsuccessfulattempttostudyanentirewatershedasanecosystem.Thestudyusedstreamchemistryasameansofmonitoringecosystemproperties,anddevelopedadetailedbiogeochemicalmodeloftheecosystem.[34]Long-termresearchatthesiteledtothediscoveryofacidraininNorthAmericain1972.Researchersdocumentedthedepletionofsoilcations(especiallycalcium)overthenextseveraldecades.[35] Ecosystemscanbestudiedthroughavarietyofapproaches—theoreticalstudies,studiesmonitoringspecificecosystemsoverlongperiodsoftime,thosethatlookatdifferencesbetweenecosystemstoelucidatehowtheyworkanddirectmanipulativeexperimentation.[36]Studiescanbecarriedoutatavarietyofscales,rangingfromwhole-ecosystemstudiestostudyingmicrocosmsormesocosms(simplifiedrepresentationsofecosystems).[37]AmericanecologistStephenR.Carpenterhasarguedthatmicrocosmexperimentscanbe"irrelevantanddiversionary"iftheyarenotcarriedoutinconjunctionwithfieldstudiesdoneattheecosystemscale.Insuchcases,microcosmexperimentsmayfailtoaccuratelypredictecosystem-leveldynamics.[38] Classifications Furtherinformation:EcosystemclassificationandBiogeoclimaticecosystemclassification Biomesaregeneralclassesorcategoriesofecosystems.[4]: 14 However,thereisnocleardistinctionbetweenbiomesandecosystems.[39]Biomesarealwaysdefinedataverygenerallevel.Ecosystemscanbedescribedatlevelsthatrangefromverygeneral(inwhichcasethenamesaresometimesthesameasthoseofbiomes)toveryspecific,suchas"wetcoastalneedle-leafedforests". Biomesvaryduetoglobalvariationsinclimate.Biomesareoftendefinedbytheirstructure:atagenerallevel,forexample,tropicalforests,temperategrasslands,andarctictundra.[4]: 14 Therecanbeanydegreeofsubcategoriesamongecosystemtypesthatcompriseabiome,e.g.,needle-leafedborealforestsorwettropicalforests.Althoughecosystemsaremostcommonlycategorizedbytheirstructureandgeography,therearealsootherwaystocategorizeandclassifyecosystemssuchasbytheirlevelofhumanimpact(seeanthropogenicbiome),orbytheirintegrationwithsocialprocessesortechnologicalprocessesortheirnovelty(e.g.novelecosystem).Eachofthesetaxonomiesofecosystemstendstoemphasizedifferentstructuralorfunctionalproperties.[40]Noneoftheseisthe“best”classification. Ecosystemclassificationsarespecifickindsofecologicalclassificationsthatconsiderallfourelementsofthedefinitionofecosystems:abioticcomponent,anabioticcomplex,theinteractionsbetweenandwithinthem,andthephysicalspacetheyoccupy.[40]Differentapproachestoecologicalclassificationshavebeendevelopedinterrestrial,freshwaterandmarinedisciplines. Examples Thefollowingarticlesareexamplesofecosystemsforparticularregions,zonesorconditions: Aquaticecosystem Borealecosystem Freshwaterecosystem Groundwater-dependentecosystems Lakeecosystem(lenticecosystem) Largemarineecosystem Marineecosystem Montaneecosystem Riverecosystem(loticecosystem) Terrestrialecosystem Urbanecosystem Humaninteractionswithecosystems Humanactivitiesareimportantinalmostallecosystems.Althoughhumansexistandoperatewithinecosystems,theircumulativeeffectsarelargeenoughtoinfluenceexternalfactorslikeclimate.[4]: 14 Ecosystemgoodsandservices TheHighPeaksWildernessAreainthe6,000,000-acre(2,400,000 ha)AdirondackParkisanexampleofadiverseecosystem. Mainarticles:EcosystemservicesandEcologicalgoodsandservices Seealso:EcosystemvaluationandEcologicalyield Ecosystemsprovideavarietyofgoodsandservicesuponwhichpeopledepend.[41]Ecosystemgoodsincludethe"tangible,materialproducts"ofecosystemprocessessuchaswater,food,fuel,constructionmaterial,andmedicinalplants.[42][43]Theyalsoincludelesstangibleitemsliketourismandrecreation,andgenesfromwildplantsandanimalsthatcanbeusedtoimprovedomesticspecies.[41] Ecosystemservices,ontheotherhand,aregenerally"improvementsintheconditionorlocationofthingsofvalue".[43]Theseincludethingslikethemaintenanceofhydrologicalcycles,cleaningairandwater,themaintenanceofoxygenintheatmosphere,croppollinationandeventhingslikebeauty,inspirationandopportunitiesforresearch.[41]Whilematerialfromtheecosystemhadtraditionallybeenrecognizedasbeingthebasisforthingsofeconomicvalue,ecosystemservicestendtobetakenforgranted.[43] TheMillenniumEcosystemAssessmentisaninternationalsynthesisbyover1000oftheworld'sleadingbiologicalscientiststhatanalyzesthestateoftheEarth'secosystemsandprovidessummariesandguidelinesfordecision-makers.Thereportidentifiedfourmajorcategoriesofecosystemservices:provisioning,regulating,culturalandsupportingservices.[44]Itconcludesthathumanactivityishavingasignificantandescalatingimpactonthebiodiversityoftheworldecosystems,reducingboththeirresilienceandbiocapacity.Thereportreferstonaturalsystemsashumanity's"life-supportsystem",providingessentialecosystemservices.Theassessmentmeasures24ecosystemservicesandconcludesthatonlyfourhaveshownimprovementoverthelast50years,15areinseriousdecline,andfiveareinaprecariouscondition.[44]: 6–19 TheIntergovernmentalScience-PolicyPlatformonBiodiversityandEcosystemServices(IPBES)isanintergovernmentalorganizationestablishedtoimprovetheinterfacebetweenscienceandpolicyonissuesofbiodiversityandecosystemservices.[45]ItisintendedtoserveasimilarroletotheIntergovernmentalPanelonClimateChange.[46]TheconceptualframeworkoftheIPBESincludessixprimaryinterlinkedelements:nature,nature’sbenefitstopeople,anthropogenicassets,institutionsandgovernancesystemsandotherindirectdriversofchange,directdriversofchange,andgoodqualityoflife.[47] Ecosystemdegradationanddecline TheForestLandscapeIntegrityIndexmeasuresglobalanthropogenicmodificationonremainingforestsannually.0=Mostmodification;10=Least.[48] Seealso:Ecosystemcollapse,Climatechangeandecosystems,andHumanecology Ashumanpopulationandpercapitaconsumptiongrow,sodotheresourcedemandsimposedonecosystemsandtheeffectsofthehumanecologicalfootprint.Naturalresourcesarevulnerableandlimited.Theenvironmentalimpactsofanthropogenicactionsarebecomingmoreapparent.Problemsforallecosystemsinclude:environmentalpollution,climatechangeandbiodiversityloss.Forterrestrialecosystemsfurtherthreatsincludeairpollution,soildegradation,anddeforestation.Foraquaticecosystemsthreatsalsoincludeunsustainableexploitationofmarineresources(forexampleoverfishing),marinepollution,microplasticspollution,theeffectsofclimatechangeonoceans(e.g.warmingandacidification),andbuildingoncoastalareas.[49] Manyecosystemsbecomedegradedthroughhumanimpacts,suchassoilloss,airandwaterpollution,habitatfragmentation,waterdiversion,firesuppression,andintroducedspeciesandinvasivespecies.[50]: 437 Thesethreatscanleadtoabrupttransformationoftheecosystemortogradualdisruptionofbioticprocessesanddegradationofabioticconditionsoftheecosystem.Oncetheoriginalecosystemhaslostitsdefiningfeatures,itisconsideredcollapsed(seealsoIUCNRedListofEcosystems).[51]Ecosystemcollapsecouldbereversibleandinthiswaydiffersfromspeciesextinction.[52]Quantitativeassessmentsoftheriskofcollapseareusedasmeasuresofconservationstatusandtrends. Ecosystemmanagement Mainarticles:Ecosystemmanagement,Ecosystem-basedmanagement,andEcosystemapproach Whennaturalresourcemanagementisappliedtowholeecosystems,ratherthansinglespecies,itistermedecosystemmanagement.[53]Althoughdefinitionsofecosystemmanagementabound,thereisacommonsetofprincipleswhichunderliethesedefinitions:Afundamentalprincipleisthelong-termsustainabilityoftheproductionofgoodsandservicesbytheecosystem;[50]"intergenerationalsustainability[is]apreconditionformanagement,notanafterthought".[41]Whileecosystemmanagementcanbeusedaspartofaplanforwildernessconservation,itcanalsobeusedinintensivelymanagedecosystems[41](see,forexample,agroecosystemandclosetonatureforestry). Ecosystemrestorationandsustainabledevelopment Seealso:RestorationecologyandUNDecadeonEcosystemRestoration Societyisincreasinglybecomingawarethatecosystemservicesarenotonlylimitedbutalsothattheyarethreatenedbyhumanactivities.Tohelpinformdecision-makers,manyecosystemservicesarebeingassignedeconomicvalues,oftenbasedonthecostofreplacementwithanthropogenicalternatives.Theongoingchallengeofprescribingeconomicvaluetonature,forexamplethroughbiodiversitybanking,ispromptingtransdisciplinaryshiftsinhowwerecognizeandmanagetheenvironment,socialresponsibility,businessopportunities,andourfutureasaspecies.[citationneeded] Ecosystemrestorationwillcontributetoall17SustainableDevelopmentGoals,inparticulartoSDG2(ZeroHunger),SDG6(CleanWaterandSanitation),SDG14(Lifebelowwater)andSDG15(LifeonLand).[54][citationneeded]Paragraph27oftheMinisterialDeclarationoftheHigh-LevelPoliticalForumontheSDGsheldinJuly2018setsoutcommitmentsmadetoachievesustainablemanagementofalltypesofforests,haltdeforestation,restoredegradedforests,andsubstantiallyincreaseafforestationandreforestationgloballyby2020.[55] Integratedconservationanddevelopmentprojects(ICDPs)aimtoaddressconservationandhumanlivelihood(sustainabledevelopment)concernsindevelopingcountriestogether,ratherthanseparatelyaswasoftendoneinthepast.[50]: 445 Seealso Earthsciencesportal Ecologyportal Environmentportal Complexsystem Earthscience Ecosystem-basedadaptation Ecosystemsinspecificregionsoftheworld: LeuserEcosystem Longleafpineecosystem TarangireEcosystem Tropicalsaltpondecosystem Ecosystemsgroupedbycondition: Agroecosystem Closedecosystem Depauperateecosystem Novelecosystem Referenceecosystem References Notes ^Hatcher,BruceGordon(1990)."Coralreefprimaryproductivity.Ahierarchyofpatternandprocess".TrendsinEcologyandEvolution.5(5):149–155.doi:10.1016/0169-5347(90)90221-X.PMID 21232343. ^abcdeChapin,F.Stuart,III(2011)."Glossary".Principlesofterrestrialecosystemecology.P.A.Matson,PeterMorrisonVitousek,MelissaC.Chapin(2nd ed.).NewYork:Springer.ISBN 978-1-4419-9504-9.OCLC 755081405. ^abcTansley,A.G.(1935)."TheUseandAbuseofVegetationalConceptsandTerms"(PDF).Ecology.16(3):284–307.doi:10.2307/1930070.JSTOR 1930070.Archivedfromtheoriginal(PDF)on2016-10-06. ^abcdefghijChapin,F.Stuart,III(2011)."Chapter1:TheEcosystemConcept".Principlesofterrestrialecosystemecology.P.A.Matson,PeterMorrisonVitousek,MelissaC.Chapin(2nd ed.).NewYork:Springer.ISBN 978-1-4419-9504-9.OCLC 755081405. ^Odum,EugeneP(1971).FundamentalsofEcology(third ed.).NewYork:Saunders.ISBN 978-0-534-42066-6. ^Willis,A.J.(1997)."TheEcosystem:AnEvolvingConceptViewedHistorically".FunctionalEcology.11(2):268–271.doi:10.1111/j.1365-2435.1997.00081.x. ^Tansley,A.G.(1939).TheBritishIslandsandTheirVegetation.CambridgeUniversityPress. ^abcChapin,F.Stuart,III(2011)."Chapter5:CarbonInputstoEcosystems".Principlesofterrestrialecosystemecology.P.A.Matson,PeterMorrisonVitousek,MelissaC.Chapin(2nd ed.).NewYork:Springer.ISBN 978-1-4419-9504-9.OCLC 755081405. ^Chapin,F.Stuart,III(2011)."Chapter2:Earth'sClimateSystem".Principlesofterrestrialecosystemecology.P.A.Matson,PeterMorrisonVitousek,MelissaC.Chapin(2nd ed.).NewYork:Springer.ISBN 978-1-4419-9504-9.OCLC 755081405. ^abChapin,F.Stuart,III(2011)."Chapter3:Geology,Soils,andSediments".Principlesofterrestrialecosystemecology.P.A.Matson,PeterMorrisonVitousek,MelissaC.Chapin(2nd ed.).NewYork:Springer.ISBN 978-1-4419-9504-9.OCLC 755081405. ^abcdeChapin,F.Stuart,III(2011)."Chapter11:SpeciesEffectsonEcosystemProcesses".Principlesofterrestrialecosystemecology.P.A.Matson,PeterMorrisonVitousek,MelissaC.Chapin(2nd ed.).NewYork:Springer.ISBN 978-1-4419-9504-9.OCLC 755081405. ^Simberloff,Daniel;Martin,Jean-Louis;Genovesi,Piero;Maris,Virginie;Wardle,DavidA.;Aronson,James;Courchamp,Franck;Galil,Bella;García-Berthou,Emili(2013)."Impactsofbiologicalinvasions:what'swhatandthewayforward".TrendsinEcology&Evolution.28(1):58–66.doi:10.1016/j.tree.2012.07.013.hdl:10261/67376.ISSN 0169-5347.PMID 22889499. ^"46.1A:EcosystemDynamics".BiologyLibreTexts.2018-07-17.Retrieved2021-08-02.Textwascopiedfromthissource,whichisavailableunderaCreativeCommonsAttribution4.0InternationalLicense. ^abcdChapin,F.Stuart,III(2011)."Chapter6:PlantCarbonBudgets".Principlesofterrestrialecosystemecology.P.A.Matson,PeterMorrisonVitousek,MelissaC.Chapin(2nd ed.).NewYork:Springer.ISBN 978-1-4419-9504-9.OCLC 755081405. ^abcdChapin,F.Stuart,III(2011)."Chapter10:TrophicDynamics".Principlesofterrestrialecosystemecology.P.A.Matson,PeterMorrisonVitousek,MelissaC.Chapin(2nd ed.).NewYork:Springer.ISBN 978-1-4419-9504-9.OCLC 755081405. ^Yvon-Durocher,Gabriel;Caffrey,JaneM.;Cescatti,Alessandro;Dossena,Matteo;Giorgio,Pauldel;Gasol,JosepM.;Montoya,JoséM.;Pumpanen,Jukka;Staehr,PeterA.(2012)."Reconcilingthetemperaturedependenceofrespirationacrosstimescalesandecosystemtypes".Nature.487(7408):472–476.Bibcode:2012Natur.487..472Y.doi:10.1038/nature11205.ISSN 0028-0836.PMID 22722862.S2CID 4422427. ^Lovett,GaryM.;Cole,JonathanJ.;Pace,MichaelL.(2006)."IsNetEcosystemProductionEqualtoEcosystemCarbonAccumulation?".Ecosystems.9(1):152–155.doi:10.1007/s10021-005-0036-3.ISSN 1435-0629.S2CID 5890190. ^abcdefChapin,F.Stuart,III(2011)."Chapter7:DecompositionandEcosystemCarbonBudgets".Principlesofterrestrialecosystemecology.P.A.Matson,PeterMorrisonVitousek,MelissaC.Chapin(2nd ed.).NewYork:Springer.ISBN 978-1-4419-9504-9.OCLC 755081405. ^abcdefghijChapin,F.Stuart,III(2011)."Chapter9:Nutrientcycling".Principlesofterrestrialecosystemecology.P.A.Matson,PeterMorrisonVitousek,MelissaC.Chapin(2nd ed.).NewYork:Springer.ISBN 978-1-4419-9504-9.OCLC 755081405. ^Ochoa-Hueso,R;Delgado-Baquerizo,M;King,PTA;Benham,M;Arca,V;Power,SA(February2019)."Ecosystemtypeandresourcequalityaremoreimportantthanglobalchangedriversinregulatingearlystagesoflitterdecomposition".SoilBiologyandBiochemistry.129:144–152.doi:10.1016/j.soilbio.2018.11.009.S2CID 92606851. ^abcdeChapin,F.Stuart,III(2011)."Chapter12:TemporalDynamics".Principlesofterrestrialecosystemecology.P.A.Matson,PeterMorrisonVitousek,MelissaC.Chapin(2nd ed.).NewYork:Springer.ISBN 978-1-4419-9504-9.OCLC 755081405. ^Principlesofecosystemstewardship :resilience-basednaturalresourcemanagementinachangingworld.F.Stuart,IIIChapin,GaryP.Kofinas,CarlFolke,MelissaC.Chapin(1st ed.).NewYork:Springer.2009.ISBN 978-0-387-73033-2.OCLC 432702920.CS1maint:others(link) ^Walker,Brian;Holling,C.S.;Carpenter,StephenR.;Kinzig,AnnP.(2004)."Resilience,AdaptabilityandTransformabilityinSocial-ecologicalSystems".EcologyandSociety.9(2):art5.doi:10.5751/ES-00650-090205.hdl:10535/3282.ISSN 1708-3087. ^Simonsen,S.H.(2015)."ApplyingResilienceThinking"(PDF). ^Walter,K.M.;Zimov,S.A.;Chanton,J.P.;Verbyla,D.;Chapin,F.S.(2006)."MethanebubblingfromSiberianthawlakesasapositivefeedbacktoclimatewarming".Nature.443(7107):71–75.Bibcode:2006Natur.443...71W.doi:10.1038/nature05040.ISSN 0028-0836.PMID 16957728.S2CID 4415304. ^Vitousek,P.;Porder,S.(2010)."Terrestrialphosphoruslimitation:mechanisms,implications,andnitrogen–phosphorusinteractions".EcologicalApplications.20(1):5–15.doi:10.1890/08-0127.1.PMID 20349827. ^abChapin,F.Stuart,III(2011)."Chapter8:PlantNutrientUse".Principlesofterrestrialecosystemecology.P.A.Matson,PeterMorrisonVitousek,MelissaC.Chapin(2nd ed.).NewYork:Springer.ISBN 978-1-4419-9504-9.OCLC 755081405. ^Bolan,N.S.(1991)."Acriticalreviewontheroleofmycorrhizalfungiintheuptakeofphosphorusbyplants".PlantandSoil.134(2):189–207.doi:10.1007/BF00012037.S2CID 44215263. ^abHestrin,R.;Hammer,E.C.;Mueller,C.W.(2019)."Synergiesbetweenmycorrhizalfungiandsoilmicrobialcommunitiesincreaseplantnitrogenacquisition".CommunBiol.2:233.doi:10.1038/s42003-019-0481-8.PMC 6588552.PMID 31263777. ^Adams,C.E.(1994)."ThefishcommunityofLochLomond,Scotland:itshistoryandrapidlychangingstatus".Hydrobiologia.290(1–3):91–102.doi:10.1007/BF00008956.S2CID 6894397. ^Schulze,Ernst-Detlef;ErwinBeck;KlausMüller-Hohenstein(2005).PlantEcology.Berlin:Springer.ISBN 978-3-540-20833-4. ^Schoener,ThomasW.(2009)."EcologicalNiche".InSimonA.Levin(ed.).ThePrincetonGuidetoEcology.Princeton:PrincetonUniversityPress.pp. 2–13.ISBN 978-0-691-12839-9. ^Jones,CliveG.;Lawton,JohnH.;Shachak,Moshe(1994)."OrganismsasEcosystemEngineers".Oikos.69(3):373–386.doi:10.2307/3545850.ISSN 0030-1299.JSTOR 3545850. ^Lindenmayer,DavidB.;GeneE.Likens(2010)."TheProblematic,theEffectiveandtheUgly–SomeCaseStudies".EffectiveEcologicalMonitoring.Collingwood,Australia:CSIROPublishing.pp. 87–145.ISBN 978-1-84971-145-6. ^Likens,GeneE.(2004)."Someperspectivesonlong-termbiogeochemicalresearchfromtheHubbardBrookEcosystemStudy"(PDF).Ecology.85(9):2355–2362.doi:10.1890/03-0243.JSTOR 3450233.Archivedfromtheoriginal(PDF)on2013-05-01. ^Carpenter,StephenR.;JonathanJ.Cole;TimothyE.Essington;JamesR.Hodgson;JeffreyN.Houser;JamesF.Kitchell;MichaelL.Pace(1998)."EvaluatingAlternativeExplanationsinEcosystemExperiments".Ecosystems.1(4):335–344.doi:10.1007/s100219900025.S2CID 33559404. ^Schindler,DavidW.(1998)."ReplicationversusRealism:TheNeedforEcosystem-ScaleExperiments".Ecosystems.1(4):323–334.doi:10.1007/s100219900026.JSTOR 3658915.S2CID 45418039. ^Carpenter,StephenR.(1996)."MicrocosmExperimentshaveLimitedRelevanceforCommunityandEcosystemEcology".Ecology.77(3):677–680.doi:10.2307/2265490.JSTOR 2265490. ^"DifferencesBetweentheGrassland&theTundra".Sciencing.Retrieved2021-07-16. ^abKeith,D.A.;Ferrer-Paris,J.R.;Nicholson,E.;Kingsford,R.T.,eds.(2020).TheIUCNGlobalEcosystemTypology2.0:Descriptiveprofilesforbiomesandecosystemfunctionalgroups.Gland,Switzerland:IUCN.doi:10.2305/IUCN.CH.2020.13.en.ISBN 978-2-8317-2077-7.S2CID 241360441. ^abcdeChristensen,NormanL.;Bartuska,AnnM.;Brown,JamesH.;Carpenter,Stephen;D'Antonio,Carla;Francis,Robert;Franklin,JerryF.;MacMahon,JamesA.;Noss,ReedF.;Parsons,DavidJ.;Peterson,CharlesH.;Turner,MonicaG.;Woodmansee,RobertG.(1996)."TheReportoftheEcologicalSocietyofAmericaCommitteeontheScientificBasisforEcosystemManagement".EcologicalApplications.6(3):665–691.CiteSeerX 10.1.1.404.4909.doi:10.2307/2269460.JSTOR 2269460. ^"EcosystemGoodsandServices"(PDF). ^abcBrown,ThomasC.;JohnC.Bergstrom;JohnB.Loomis(2007)."Defining,valuingandprovidingecosystemgoodsandservices"(PDF).NaturalResourcesJournal.47(2):329–376.Archivedfromtheoriginal(PDF)on2013-05-25. ^ab"MillenniumEcosystemAssessment".2005.Retrieved10November2021. ^"IPBES".Archivedfromtheoriginalon27June2019.Retrieved28June2019. ^"Biodiversitycrisisisworsethanclimatechange,expertssay".ScienceDaily.January20,2012.RetrievedSeptember11,2019. ^Díaz,Sandra;Demissew,Sebsebe;Carabias,Julia;Joly,Carlos;Lonsdale,Mark;Ash,Neville;Larigauderie,Anne;Adhikari,JayRam;Arico,Salvatore;Báldi,András;Bartuska,Ann(2015)."TheIPBESConceptualFramework—connectingnatureandpeople".CurrentOpinioninEnvironmentalSustainability.14:1–16.doi:10.1016/j.cosust.2014.11.002. ^Grantham,H.S.;Duncan,A.;Evans,T.D.;Jones,K.R.;Beyer,H.L.;Schuster,R.;Walston,J.;Ray,J.C.;Robinson,J.G.;Callow,M.;Clements,T.;Costa,H.M.;DeGemmis,A.;Elsen,P.R.;Ervin,J.;Franco,P.;Goldman,E.;Goetz,S.;Hansen,A.;Hofsvang,E.;Jantz,P.;Jupiter,S.;Kang,A.;Langhammer,P.;Laurance,W.F.;Lieberman,S.;Linkie,M.;Malhi,Y.;Maxwell,S.;Mendez,M.;Mittermeier,R.;Murray,N.J.;Possingham,H.;Radachowsky,J.;Saatchi,S.;Samper,C.;Silverman,J.;Shapiro,A.;Strassburg,B.;Stevens,T.;Stokes,E.;Taylor,R.;Tear,T.;Tizard,R.;Venter,O.;Visconti,P.;Wang,S.;Watson,J.E.M.(2020)."Anthropogenicmodificationofforestsmeansonly40%ofremainingforestshavehighecosystemintegrity".NatureCommunications.11(1):5978.Bibcode:2020NatCo..11.5978G.doi:10.1038/s41467-020-19493-3.ISSN 2041-1723.PMC 7723057.PMID 33293507. ^Alexander,DavidE.(1May1999).EncyclopediaofEnvironmentalScience.Springer.ISBN 978-0-412-74050-3. ^abcChapin,F.Stuart,III(2011)."Chapter15:ManagingandSustainingEcosystems".Principlesofterrestrialecosystemecology.P.A.Matson,PeterMorrisonVitousek,MelissaC.Chapin(2nd ed.).NewYork:Springer.ISBN 978-1-4419-9504-9.OCLC 755081405. ^Keith,DA;Rodríguez,J.P.;Rodríguez-Clark,K.M.;Aapala,K.;Alonso,A.;Asmussen,M.;Bachman,S.;Bassett,A.;Barrow,E.G.;Benson,J.S.;Bishop,M.J.;Bonifacio,R.;Brooks,T.M.;Burgman,M.A.;Comer,P.;Comín,F.A.;Essl,F.;Faber-Langendoen,D.;Fairweather,P.G.;Holdaway,R.J.;Jennings,M.;Kingsford,R.T.;Lester,R.E.;MacNally,R.;McCarthy,M.A.;Moat,J.;Nicholson,E.;Oliveira-Miranda,M.A.;Pisanu,P.;Poulin,B.;Riecken,U.;Spalding,M.D.;Zambrano-Martínez,S.(2013)."ScientificFoundationsforanIUCNRedListofEcosystems".PLOSONE.8(5):e62111.Bibcode:2013PLoSO...862111K.doi:10.1371/journal.pone.0062111.PMC 3648534.PMID 23667454.Retrieved8September2018. ^Boitani,Luigi;Mace,GeorginaM.;Rondinini,Carlo(2014)."ChallengingtheScientificFoundationsforanIUCNRedListofEcosystems"(PDF).ConservationLetters.8(2):125–131.doi:10.1111/conl.12111.hdl:11573/624610. ^Grumbine,R.Edward(1994)."Whatisecosystemmanagement?"(PDF).ConservationBiology.8(1):27–38.doi:10.1046/j.1523-1739.1994.08010027.x.Archivedfromtheoriginal(PDF)on2013-05-02. ^"SDGs.:.SustainableDevelopmentKnowledgePlatform".Sustainabledevelopment.un.org. ^"High-LevelPoliticalForum2018(HLPF2018).:.SustainableDevelopmentKnowledgePlatform".Sustainabledevelopment.un.org. WikimediaCommonshasmediarelatedtoEcosystems. LookupecosysteminWiktionary,thefreedictionary. ScholiahasatopicprofileforEcosystem. vteEcology:Modellingecosystems:TrophiccomponentsGeneral Abioticcomponent Abioticstress Behaviour Biogeochemicalcycle Biomass Bioticcomponent Bioticstress Carryingcapacity Competition Ecosystem Ecosystemecology Ecosystemmodel Keystonespecies Listoffeedingbehaviours Metabolictheoryofecology Productivity Resource Producers Autotrophs Chemosynthesis Chemotrophs Foundationspecies Mixotrophs Myco-heterotrophy Mycotroph Organotrophs Photoheterotrophs Photosynthesis Photosyntheticefficiency Phototrophs Primarynutritionalgroups Primaryproduction Consumers Apexpredator Bacterivore Carnivores Chemoorganotroph Foraging Generalistandspecialistspecies Intraguildpredation Herbivores Heterotroph Heterotrophicnutrition Insectivore Mesopredators Mesopredatorreleasehypothesis Omnivores Optimalforagingtheory Planktivore Predation Preyswitching Decomposers Chemoorganoheterotrophy Decomposition Detritivores Detritus Microorganisms Archaea Bacteriophage Lithoautotroph Lithotrophy Marinemicroorganisms Microbialcooperation Microbialecology Microbialfoodweb Microbialintelligence Microbialloop Microbialmat Microbialmetabolism Phageecology Foodwebs Biomagnification Ecologicalefficiency Ecologicalpyramid Energyflow Foodchain Trophiclevel Examplewebs Lakes Rivers Soil Tritrophicinteractionsinplantdefense Marinefoodwebs coldseeps hydrothermalvents intertidal kelpforests NorthPacificGyre SanFranciscoEstuary tidepool Processes Ascendency Bioaccumulation Cascadeeffect Climaxcommunity Competitiveexclusionprinciple Consumer–resourceinteractions Copiotrophs Dominance Ecologicalnetwork Ecologicalsuccession Energyquality EnergySystemsLanguage f-ratio Feedconversionratio Feedingfrenzy Mesotrophicsoil Nutrientcycle Oligotroph Paradoxoftheplankton Trophiccascade Trophicmutualism Trophicstateindex Defense,counter Animalcoloration Anti-predatoradaptations Camouflage Deimaticbehaviour Herbivoreadaptationstoplantdefense Mimicry Plantdefenseagainstherbivory Predatoravoidanceinschoolingfish vteEcology:Modellingecosystems:OthercomponentsPopulationecology Abundance Alleeeffect Depensation Ecologicalyield Effectivepopulationsize Intraspecificcompetition Logisticfunction Malthusiangrowthmodel Maximumsustainableyield Overpopulation Overexploitation Populationcycle Populationdynamics Populationmodeling Populationsize Predator–prey(Lotka–Volterra)equations Recruitment Resilience Smallpopulationsize Stability Species Biodiversity Density-dependentinhibition Ecologicaleffectsofbiodiversity Ecologicalextinction Endemicspecies Flagshipspecies Gradientanalysis Indicatorspecies Introducedspecies Invasivespecies Latitudinalgradientsinspeciesdiversity Minimumviablepopulation Neutraltheory Occupancy–abundancerelationship Populationviabilityanalysis Priorityeffect Rapoport'srule Relativeabundancedistribution Relativespeciesabundance Speciesdiversity Specieshomogeneity Speciesrichness Speciesdistribution Species-areacurve Umbrellaspecies Speciesinteraction Antibiosis Biologicalinteraction Commensalism Communityecology Ecologicalfacilitation Interspecificcompetition Mutualism Parasitism Storageeffect Symbiosis Spatialecology Biogeography Cross-boundarysubsidy Ecocline Ecotone Ecotype Disturbance Edgeeffects Foster'srule Habitatfragmentation Idealfreedistribution Intermediatedisturbancehypothesis Insularbiogeography Landchangemodeling Landscapeecology Landscapeepidemiology Landscapelimnology Metapopulation Patchdynamics r/Kselectiontheory Resourceselectionfunction Source–sinkdynamics Niche Ecologicalniche Ecologicaltrap Ecosystemengineer Environmentalnichemodelling Guild Habitat marinehabitats Limitingsimilarity Nicheapportionmentmodels Nicheconstruction Nichedifferentiation Ontogeneticnicheshift Othernetworks Assemblyrules Bateman'sprinciple Bioluminescence Ecologicalcollapse Ecologicaldebt Ecologicaldeficit Ecologicalenergetics Ecologicalindicator Ecologicalthreshold Ecosystemdiversity Emergence Extinctiondebt Kleiber'slaw Liebig'slawoftheminimum Marginalvaluetheorem Thorson'srule Xerosere Other Allometry Alternativestablestate Balanceofnature Biologicaldatavisualization Ecocline Ecologicaleconomics Ecologicalfootprint Ecologicalforecasting Ecologicalhumanities Ecologicalstoichiometry Ecopath Ecosystembasedfisheries Endolith Evolutionaryecology Functionalecology Industrialecology Macroecology Microecosystem Naturalenvironment Regimeshift Sexecology Systemsecology Urbanecology Theoreticalecology Listofecologytopics vteHierarchyoflife Biosphere >Biome >Ecosystem >Biocenosis >Population >Organism >Organsystem >Organ >Tissue >Cell >Organelle >Biomolecularcomplex >Macromolecule >Biomolecule vteEarthContinents Africa Antarctica Asia Australia Europe NorthAmerica SouthAmerica Oceans ArcticOcean AtlanticOcean IndianOcean PacificOcean SouthernOcean Oceanography Geology AgeofEarth Geology Earthscience Erosion ExtremesonEarth Future Geologicalhistory timescale Geologicrecord Geophysics Gravity HistoryofEarth Magneticfield Platetectonics Structure Atmosphere AtmosphereofEarth Troposphere Stratosphere Mesosphere Thermosphere Exosphere Weather Climate Climatesystem Climatescience Energybalance Climatechange Climatevariabilityandchange Paleoclimatology Environment Biome Biosphere Biogeochemicalcycles Ecology Ecosystem Humanimpactontheenvironment Evolutionaryhistoryoflife Nature Cartography Digitalmapping Satelliteimagery Virtualglobe Worldmap Cultureandsociety Listofsovereignstates dependentterritories Inculture EarthDay Worldeconomy Etymology Worldhistory Timezones World Planetaryscience Earth'sorbit EvolutionofSolarSystem Geologyofsolarterrestrialplanets LocationintheUniverse TheMoon SolarSystem Earthsciencesportal Solarsystemportal Worldportal OutlineofEarth Category vteElementsofnatureUniverse Space Time Energy Matter particles chemicalelements Change Earth Earthscience History (geological) Structure Geology Platetectonics Oceans Gaiahypothesis Future Weather Meteorology Atmosphere(Earth) Climate Clouds Rain Snow Sunlight Tides Wind tornado tropicalcyclone Naturalenvironment Ecology Ecosystem Field Radiation Wilderness Wildfires Life Origin(abiogenesis) Evolutionaryhistory Biosphere Hierarchy Biology (astrobiology) Biodiversity Organism Eukaryota flora plants fauna animals fungi protista Prokaryotes archaea bacteria Viruses Category vteSystemsscienceSystemtypes Anatomical Art Biological Complex Complexadaptive Conceptual Coupledhuman–environment Database Dynamical Ecological Economic Energy Formal Holarchic Information Legal Measurement Metric Multi-agent Nervous Nonlinear Operating Planetary Political Sensory Social Star Writing Concepts Doublingtime Leveragepoints Limitingfactor Negativefeedback Positivefeedback Theoreticalfields Chaostheory Complexsystems Controltheory Cybernetics Earthsystemscience Livingsystems Sociotechnicalsystem Systemics Urbanmetabolism World-systemstheory Analysis Biology Dynamics Ecology Engineering Neuroscience Pharmacology Psychology Theory(Systemsthinking) Scientists AlexanderBogdanov RussellL.Ackoff WilliamRossAshby RuzenaBajcsy BélaH.Bánáthy GregoryBateson AnthonyStaffordBeer RichardE.Bellman LudwigvonBertalanffy MargaretBoden KennethE.Boulding MurrayBowen KathleenCarley MaryCartwright C.WestChurchman ManfredClynes GeorgeDantzig EdsgerW.Dijkstra FredEmery HeinzvonFoerster StephanieForrest JayWrightForrester BarbaraGrosz CharlesA. S.Hall MikeJackson LydiaKavraki JamesJ.Kay FainaM.Kirillova GeorgeKlir AllennaLeonard EdwardNortonLorenz NiklasLuhmann HumbertoMaturana MargaretMead DonellaMeadows MihajloD.Mesarovic JamesGrierMiller RadhikaNagpal HowardT.Odum TalcottParsons IlyaPrigogine QianXuesen AnatolRapoport JohnSeddon PeterSenge ClaudeShannon KatiaSycara EricTrist FranciscoVarela ManuelaM.Veloso KevinWarwick NorbertWiener JenniferWilby AnthonyWilden Applications Systemstheoryinanthropology Systemstheoryinarchaeology Systemstheoryinpoliticalscience Organizations List PrincipiaCybernetica Category Portal Commons AuthoritycontrolGeneral IntegratedAuthorityFile(Germany) Nationallibraries Ukraine Japan Other MicrosoftAcademic Retrievedfrom"https://en.wikipedia.org/w/index.php?title=Ecosystem&oldid=1062820127" Categories:EcosystemsEcologyBiologicalsystemsSuperorganismsSymbiosisSystemsecologyHiddencategories:CS1maint:othersArticleswithshortdescriptionShortdescriptionisdifferentfromWikidataWikipediapagessemi-protectedagainstvandalismAllarticleswithunsourcedstatementsArticleswithunsourcedstatementsfromMarch2018CommonscategorylinkisonWikidataArticleswithGNDidentifiersArticleswithEMUidentifiersArticleswithNDLidentifiersArticleswithMAidentifiers Navigationmenu Personaltools NotloggedinTalkContributionsCreateaccountLogin Namespaces ArticleTalk Variants expanded collapsed Views ReadViewsourceViewhistory More expanded collapsed Search Navigation MainpageContentsCurrenteventsRandomarticleAboutWikipediaContactusDonate Contribute HelpLearntoeditCommunityportalRecentchangesUploadfile Tools WhatlinkshereRelatedchangesUploadfileSpecialpagesPermanentlinkPageinformationCitethispageWikidataitem Print/export DownloadasPDFPrintableversion Inotherprojects WikimediaCommonsWikiquote Languages AfrikaansAlemannischالعربيةAragonésঅসমীয়াAsturianuAzərbaycancaবাংলাBân-lâm-gúБеларускаяБеларуская(тарашкевіца)भोजपुरीБългарскиBosanskiBrezhonegCatalàČeštinaCymraegDanskDeutschEestiΕλληνικάEspañolEsperantoEuskaraفارسیFrançaisFryskGaeilgeGalegoગુજરાતી한국어Հայերենहिन्दीHrvatskiIdoBahasaIndonesiaÍslenskaItalianoעבריתJawaಕನ್ನಡქართულიҚазақшаKreyòlayisyenKriyòlgwiyannenКыргызчаLatinaLatviešuLëtzebuergeschLietuviųLimburgsMagyarМакедонскиMalagasyമലയാളംმარგალურიBahasaMelayuМонголမြန်မာဘာသာNederlandsनेपाली日本語NorskbokmålNorsknynorskOccitanOʻzbekcha/ўзбекчаPapiamentuPatoisភាសាខ្មែរPiemontèisPlattdüütschPolskiPortuguêsRomânăРусскийसंस्कृतम्ScotsSeelterskShqipසිංහලSimpleEnglishSlovenčinaSlovenščinaСрпски/srpskiSrpskohrvatski/српскохрватскиSundaSuomiSvenskaTagalogதமிழ்Татарча/tatarçaతెలుగుไทยТоҷикӣTürkçeУкраїнськаTiếngViệtWest-VlamsWinaray吴语粵語Zazaki中文 Editlinks
延伸文章資訊
- 1Ecosystem | National Geographic Society
An ecosystem is a geographic area where plants, animals, and other organisms, as well as weather ...
- 2Ecosystem - Wikipedia
Definition. An ecosystem (or ecological system) consists of all the organisms and the abiotic poo...
- 3Ecosystem definition and meaning | Collins English Dictionary
Ecosystem definition: An ecosystem is all the plants and animals that live in a particular area t...
- 4Ecosystem: Definition, Importance, Examples, Human Causes
The simplest definition of an ecosystem is that it is a community or group of living organisms th...
- 5ecosystem - 生態系統 - 國家教育研究院雙語詞彙
生態系統 · Ecosystem · 名詞解釋: 「生態系統」指在某系統之外的其他系統的總和,比如在教育系統而言,宗教系統、政治系統、經濟系統即為其生態系統。社會中不同的系統透過 ...