New inducible promoter for gene expression and synthetic ...
文章推薦指數: 80 %
... metabolic engineering, and synthetic biology have been developed, thus filling the gap of the absence of versatile inducible promoter in ... Skiptomaincontent Advertisement SearchallBMCarticles Search NewinduciblepromoterforgeneexpressionandsyntheticbiologyinYarrowialipolytica DownloadPDF DownloadPDF Research OpenAccess Published:15August2017 NewinduciblepromoterforgeneexpressionandsyntheticbiologyinYarrowialipolytica MarionTrassaert1 na1,MarieVandermies2 na1,FrédericCarly1,3,OliviaDenies2,StéphaneThomas1,PatrickFickers2&Jean-MarcNicaud ORCID:orcid.org/0000-0002-6679-972X1,4 MicrobialCellFactories volume 16,Article number: 141(2017) Citethisarticle 7281Accesses 55Citations 8Altmetric Metricsdetails AbstractBackgroundTheoleaginousyeastYarrowialipolyticaisincreasinglyusedasalternativecellfactoryfortheproductionofrecombinantproteins.Atpresent,severalpromoterswithdifferentstrengthshavebeendevelopedbasedeitherontheconstitutivepTEFpromoteroronoleicacidinduciblepromoterssuchaspPOX2andpLIP2.Althoughthesepromotersarehighlyefficient,thereisstillalackofversatileinduciblepromotersforgeneexpressioninY.lipolytica. ResultsWehaveisolatedandcharacterizedthepromoteroftheEYK1genecodingforanerythrulosekinase.pEYK1inductionwasfoundtobeimpairedinmediasupplementedwithglucoseandglycerol,whilethepresenceoferythritolanderythrulosestronglyincreasedthepromoterinductionlevel.PromotercharacterizationandmutagenesisallowedtheidentificationoftheupstreamactivatingsequenceUAS1EYK1.NewhybridpromoterscontainingtandemrepeatsofeitherUAS1XPR2orUAS1EYK1weredevelopedshowinghigherexpressionlevelsthanthenativepEYK1promoter.Furthermore,promoterstrengthwasimprovedinastraincarryingadeletionintheEYK1gene,allowingthustheutilizationoferythritolanderythruloseasfreeinducer.ConclusionsNoveltunableandregulatedpromoterswithapplicationsinthefieldofheterologousproteinproduction,metabolicengineering,andsyntheticbiologyhavebeendeveloped,thusfillingthegapoftheabsenceofversatileinduciblepromoterintheyeastY.lipolytica. BackgroundInterestinnon-conventionalyeastssuchasPichiapastoris,Hansenulapolymorpha(Pichiaangusta),andYarrowialipolyticaascellfactoriesfortheproductionofrecombinantproteinsorbiomoleculeswithbiotechnologicalorpharmaceuticalapplicationshasincreasedovertheyears[1].InY.lipolytica,morethan100heterologousproteinshavebeensuccessfullyproducedathighyield,underscoringitsproductionpotential[1,2].Y.lipolyticaisamodelyeastspecies,well-knownforitsunusualmetabolicpropertiessuchastheabilitytogrowonfattyacidsoralkanesassolecarbonsourceandtoaccumulateintracellularlipidsathighyield[3,4].Thisfeaturehasenabledthedevelopmentofmetabolicengineeringstrategiestoconstructmutantstrainstoproducelipidforbiodieselandbiojetfuel[5,6,7,8,9,10,11,12],ortosynthetizeunusualfattyacids[13],suchasω−3[14],ricinoleicacid[15],conjugatedfattyacids[16,17],andfattyacidderivatives(e.g.,fattyalcoholanddicarboxilicacid)[18].Basedonitsabilitytosecretelargeamountsofproteinsandmetabolites,Y.lipolyticahasbeenusedforseveralindustrialapplications,includingheterologousproteinsynthesis,citricacidanderythritolproduction[19,20].Besides,Y.lipolyticahasbeenaccordedaGRAS(generallyrecognizedassafe)status[19].Whendevelopinganefficientcellfactory,thechoiceofthepromoterdrivingrecombinantgeneexpressioniscrucial,andthereforerepresentsoneofthekeyparameterstobeoptimized.Atpresent,fewpromotershavebeenidentifiedandtheirregulationisnotfullyunderstoodyet.Historically,thepromoterfromtheXPR2gene,whichencodesanalkalineextracellularprotease,wasthefirsttobecharacterized[21].Althoughthispromoterhasbeenusedsuccessfully,itsfullinductionrequireshighpeptidesconcentrationsandapHabovesix,conditionsthatareoftenunfeasibleatindustrialscale.Comparisonofstrengthandregulationofpromotersfromtheglycerol-3-phosphatedehydrogenase(G3P),theisocitratelyase(ICL1)andofgenesinvolvedinbeta-oxidationpathwaysuchasthe3-oxo-acyl-CoAthiolase(POT1)andtheacyl-CoAoxidases(POX2,POX1andPOX5)wasreported[22].Thisprovidedthefirststrongpromotersinduciblebyglycerol(G3P),ethanol(ICL)andoleicacid(POT1andPOX2).Otherregulatedpromoters,suchastheonefromLIP2andPOX2geneencodinganextracellularlipaseandacyl-CoAoxidase2,respectively,havebeendevelopedandcharacterized[23,24,25].UsingexpressionvectorsbasedonpLIP2,higherproteinproductivitiessuchasforLip2plipasehavebeenobtainedinY.lipolyticathaninothercellfactoriessuchasP.pastoris.UsingtheGAPconstitutivepromoter,Wangandcolleagues[26]obtainedlipaseactivitylevelsof13,500 U/mLfromaglucosefed-batchprocessina10-Lbioreactor.Incontrast,activitylevelsof150,000 U/mLwereobtainedusingLIP2promoterandatryptone-oliveoilfed-batchprocess[3].However,theutilizationofpLIP2andpPOX2isdifficultinpractice,especiallyinlarge-scalebioreactor,duetothehydrophobicnature(waterinsoluble)oftheinducer(i.e.fattyacidsortriglycerides).OtherinduciblepromotersavailableinY.lipolyticaarethosefromgenesencodingisocitratelyase(pICL1,[22]),fructose-bisphosphatealdolase(pFBA1,[27]),phosphoglyceratemutase(pGPM)orglycerol-3-phosphateO-acyltransferase(pGPAT).Theyhavebeenusedforheterologousproteinproductionwithvarioussuccesses(forareviewsee[1,28]).Constitutivepromotershavealsobeenconsidered.ThefunctionaldissectionofpXPR2allowedtheidentificationofoneofitsupstreamactivatingsequence(UAS1XPR2)thatispoorlyaffectedbycultivationconditions[29].Hybridpromoters,containinguptofourdirectrepeatsofUAS1XPR2upstreamoftheminimalLEU2promoter(mLEU2),werefirstconstructed[30].Amongthese,hp4dwaswidelyusedforheterologousproteinproduction(forreviewsee[2]).ThislatterhasbeenatthebasisoftheY.lipolyticaYLEXexpressionkitcommercialisedbyYeasternBiotechCo.(Taiwan).Morerecently,anextendedseriesofhybridpromoters,carryingvariouscopynumbers(upto32)ofUAS1XPR2upstreamofmLEU2,wereconstructed[31].SomeofthesehybridpromoterswereshowntopossessanefficiencyeightfoldhigherthananyknownendogenouspromoterfromY.lipolytica[31].ThepromoterfromtheTEF1geneencodingthetranslationelongationfactor-1α[32]isalsowidelyusedtodriveconstitutivegeneexpressioninY.lipolytica.Hybridpromoterswithvariablestrengthsderivedfromthelatterwererecentlytestedfortheproductionofsecretedproteinsofindustrialinterestsuchasxylanaseandglucoamylase[33].Thisstudyhighlightedthathigherproteinproductivitydoesnotnecessarilyrelyonthestrengthofthepromoterusedfortheexpressionofthecorrespondinggene.Insyntheticbiology,geneexpressionmustbefine-tunedinordertoensureoptimalfluxesinthecorrespondingpathwayortoavoidametabolicburden.Hussainandcolleagues[34]investigatedpromoterstrengthbyshufflingpromoterconstitutiveelements(UAS,proximalpromoter,TATAboxandcorepromoter)ofvariousfungalgenepromoters(TEF,POX2,LEU2,PAT1)inY.lipolytica.Theyfoundoutthatengineeringpromoterarchitectureallowstomodulateandtofine-tunegeneexpressionlevel.However,toexpendtherangeofthisregulation,novelregulatoryelements(UAS)andthusnovelregulatedpromotersremaintobediscovered.Inthisstudy,wereportontheidentificationoftheinduciblepromoterfromtheEYK1geneencodinganerythrulosekinaseinY.lipolytica,thecharacterisationofitsregulatoryelementsandthedevelopmentofhybridderivativespromotersshowingdifferentinductionstrengthsandregulatorypatternsdependingonthegeneticbackgroundoftherecipientstrain(WTor∆eyk1).Thissetofnovelpromotershasdirectapplicationsforheterologousproteinproduction,metabolicengineeringandsyntheticbiology.MethodsGrowthandcultureconditionsTheY.lipolyticastrainsusedinthisstudywerederivedfromthewild-typeY.lipolyticaW29strain(ATCC20460).TheauxotrophicderivativePo1d(Leu−Ura−)waspreviouslydescribedbyBarthandGaillardin[35].EscherichiacolistrainDH5αwasusedforhostingandamplificationofrecombinantplasmidDNA.AllthestrainsusedinthisstudyarelistedinTable 1.ThemediaandgrowthconditionsusedforE.coliweredescribedbySambrookandcolleagues[36].YPDandYNBmediumtogetherwithgrowthconditionsforY.lipolyticahavebeenpreviouslydescribedbyBarthandGaillardin[35].Tomeetauxotrophicrequirements,uracil(0.1 g/L)and/orleucine(0.1 g/L)wereaddedtotheculturemediumwhennecessary.Casaminoacids(0.2%BactoCasaminoAcids,Difco,Paris,France),wereaddedtobioreactorsforfastergrowthrate.GrowthofY.lipolyticawasperformedinbaffled250 mLflaskincubatedat28 °Cat160 rpm.YNBmediumwassupplementedwithcarbonsource(10 g/L)asfollows:glucose(YNBD),glycerol(YNBG),erythritol(YNBOL)orerythrulose(YNBOSE).Growthof∆eyk1strainswereperformedinYNBmediumwith0.25%glucoseorglycerolascarbonsourceand0.25%erythritolorerythruloseasinducer.Table 1ListofstrainsandplasmidsusedinthisstudyFullsizetable Growthinmicroplateandfluorescenceanalysis YarrowialipolyticapreculturesweregrownovernightinYNBD,beforebeingcentrifuged,washedwithanequalvolumeofYNBmediumwithoutcarbonsourceandresuspendedin1 mLofthesamemedium.96-wellmicroplatescontaining200 μLoftheappropriatedmedium(finalvolume)wereinoculatedwithwashedcellsatanOD600nmof0.1.GrowthwasperformedinamicrotiterplatereaderSynergyMx(Biotek,Colmar,France)followingthemanufacturer’sinstructionsat28 °Cand110 rpm.OD600nmandfluorescenceweremeasuredevery20 minfor72 h.YFPfluorescencewasanalyzedwiththewavelengthsettingsex:505 nm/em:530 nm.Fluorescencewasexpressedasspecificfluorescenceunit(SFU,normalizedtobiomassvalue)ormeanspecificfluorescencevalue(mSFU,meanvalueofSFUforthedifferentsamplingtimes).TheSFUvalueofthewild-typestrainJMY2900(i.e.cellintrinsicfluorescence)wassystematicallydeducedfromthatoftheYFPreporterstraininthesameexperimentalconditions(samplingtimeandmedium).Cultureswereperformedinduplicates.Growthinbioreactorandmonitoringofpromoterinductionbyflowcytometry YarrowialipolyticapreculturesweregrownovernightinYPD,beforebeingcentrifuged,washedwithanequalvolumeofYNBmediumwithoutcarbonsourceandresuspendedin5 mLoftheculturemedium.ThewashedcellswereusedforbioreactorinoculationatanOD600nmof0.5.Chemostatwereperformedin200 mL(150 mLworkingvolume)DASGIP®DASboxMiniBioreactorsSR0250ODLS(Eppendorf,Hamburg,Germany).Arunof7 hinbatchmodewasperformedbeforebeingshiftedincontinuousmodewithdilutionratesasstipulatedinthetext.FeedingoffreshmediumwasensuredbyaWatsonMarlow323Speristalticpump(WatsonMarlow,FalmouthCornwall,UK),andremovalofspentmediumwasensuredbyaWatsonMarlow120U/DM3peristalticpump.Cultureparametersweresetasfollows:temperature,30 °C;agitationrate,800 rpm;aerationrateat1 vvm.Carbonsourcepulses(CSP)inthereactorswereatfixedvolume(4.2 mL),regardlessofthepulseconcentration.AftereachCSP,biomass,YFPfluorescenceandcarbonsourceconcentrationsweremonitoredfor8 hwithasamplingfrequencyof1 h.CSPwereperformedatsteadystate.Chemostatcultureswereperformedinduplicates.YFPfluorescencewasmonitoredusingaBDAccuri™C6FlowCytometer(BDBiosciences,NJ,USA).Flowratewasfixedat14 µL/min,andsamplesweredilutedwithphosphatesalinebuffer(PBS)toreachacelldensityrangingbetween500and2500 cells/µL.Foreachsample,40,000cellswereanalyzedusingtheFL1-AchanneltoidentifyfluorescenceassociatedwiththeYFP(excitationwasperformedwitha20-mW,488-nmsolid-statebluelaser;theemissionwavelengthwas533/30 nm).Additionally,datafromtheforwardscatterchannel(FSC-A)werecollectedtogetinformationonthesizedispersionamongthecellpopulation.Theflowcytometrydotplots(FL1-A/FSC-A)wereanalyzedusingCFlowPlussoftware(Accuri,BDBioscience).Forfurtherprocessing,therawdatawereexportedas.fcsfilesandloadedinMatLabusingthefca_readfscfunction(downloadedfromtheMatLabFileExchangefileserver;[37]).Backgroundnoise(cellintrinsicfluorescence)wasfixedat4000fluorescenceunits.Thisvalueencompassesthefluorescencelevelofatleast99.3%ofthewild-typecells(strainJMY2900)growninYNBG(glycerol),YNBOL(erythritol)andofJMY6245(pEYK300-YFP)growninYNBG(glycerol).Relativefluorescence(RFU)wasdefinedasthesamplemedianfluorescencevalueminustheintrinsicfluorescencevalue.Proportionofinducedcellsreferstothenumberofcellsshowingafluorescencesignalhigherthan4000fluorescenceunits,relativetothetotalnumberofanalyzedcellsinthesample(i.e.40,000).GateQ1-URofFSC-A/FL1-Acytogramsencompassesinducedcells.PlasmidandyeaststrainconstructionPlasmidconstructionRestrictionenzymes,DNApolymerases,andligaseswereusedinaccordancewiththemanufacturer’srecommendations.RestrictionenzymeswereobtainedfromOZYME(Saint-Quentin-en-Yvelines,France).PCRamplificationswereperformedusinganEppendorf2720thermalcyclerwithPyroBestDNApolymerase(Takara)forcloningpurposeandwithGoTaqDNApolymerase(Promega)fordeletion/overexpressionverification.PCRfragmentswerepurifiedusingaQIAgenPurificationKit(Qiagen,Hilden,Germany),andDNAfragmentswererecoveredfromagarosegelsusingaQIAquickGelExtractionKit(Qiagen,Hilden,Germany).DNAsequencingwasperformedbyGATCBiotechandprimersweresynthetizedbyEurogentec(Seraing,Belgium).TheCloneManagersoftwarepackage(Sci-EdSoftware)wasusedforgenesequenceanalysisandprimerdesign.Disruptionandexpressioncassetteswereusedtotransformyeastcellsusingthelithiumacetatemethod[38].TransformantswereselectedonYNBcasa,YNBura,orYNBdependingontheirgenotype.ThegenomicDNAfromyeasttransformantswasobtainedasdescribedbyQuerolandcolleagues[39].PrimersMT-URA3-for,MT-YFP-rev,pTEF-start,61stopwereusedtoverifysuccessfulinsertionoftheexpressioncassetteandthepromotersequences.Foreachtransformation,atleastthreeindependenttransformantscarryingthecorrectintegrationwereanalysed.Therepresentativecloneswereusedforthisstudy.ThestrainsandplasmidsusedinthisstudyaresummarizedinTable 1andprimersarelistedinTable 2.Thevectorscarryingtheyellowfluorescentprotein(YFP)underthecontrolofthepTEFandhp4dhavebeenpreviouslydescribed(Table 1).ThepEYK1promoteranditsderivatives(mutatedandhybridpromoters)wereintroducedbyexchangeoftheClaI-BamH1regionortheClaI-SpeIregionofYFP-encodingplasmidasdescribedbelow.Table 2ListofprimersusedinthisstudyFullsizetable ConstructionofpEYK300ThepromoterregionofEYK1gene(pEYK300)wasamplifiedfromgenomicDNAofY.lipolyticastrainW29withprimerpairpEYK300F/pEYKR,designedtointroduceClaIandBamHIrestrictionsites,respectively,intheamplifiedfragment.TheresultingampliconwaspurifiedandclonedintopJET1.2,toyieldplasmidFCP007.ThepEYK300fragmentwasthenreleasedfromFCP007andclonedatthecorrespondingsiteofJMP1427,yieldingtheplasmidJMP3934.ConstructionofpEYK450,pEYK300AbandpEYK300aBpromotersPlasmidcontainingpEYK450wasobtainedbyPCRamplificationoftheintergenicregionbetweengenesYALI0F01628gandYALI0F01606gwithprimerpairMT-TATAampli-F/MT-TATAampli-R.Thisresultedina252 bpfragmentcarryingT,AandBboxeswithinaClaI-SpeIfragment(sitesaddedatthe5′and3′ends,respectively).ThisfragmentwasligatedintoFCP013digestedbyClaI-SpeI,toyieldtheplasmidJMP3994(pEYK450).PlasmidscontainingpEYK300AbandpEYK300aBwereobtainedbyexchangeoftheClaI-SpeIfragmentofJMP3934(pEYK300)bytwoClaI-SpeIDNAfragmentscarryingtheA(aB)orB(Ab)mutatedregions,respectively.TheywereobtainedbyannealingoligonucleotidesST044/ST045/ST050/ST047(fragmentaB)andST043/ST046/ST049tB/ST048(fragmentAb)(Table 2).TheoligonucleotidesST044andST046containaMluIsitefortheverificationoftheinsertionofthemutation.TheresultingplasmidsweredesignatedJMP3988(pEYK300aB)andJMP3991(pEYK300Ab),respectively.ConstructionofhybridpHU4EYK300promoterThefragmentcarryingfourtandemrepeatsoftheUAS1XPR2(HU4derivingfromhp4d)wasobtainedbyClaI-BstBIdigestionfromtheJMP2027vector[33].Aftergelpurification,itwasthenligatedattheClaIsiteofJMP3934(previouslydigestedbyClaIanddephosphorylated).CorrectorientationoftheHU4regionwasverifiedbyClaI-BamHIrestrictionandDNAsequencing.TheresultingplasmidwasnamedJMP3998(pHU4EYK300).ConstructionofhybridEYKpromoterSyntheticpromoterscarryingthreerepeatedofdomainsofAboxupstreamofthewild-typeBbox(A3B,JMP4123)andthemutatedBbox(A3b,JMP4124)weresynthesisedbyGenScriptBiotechCo.(China)withClaIandSpeIsitesatthe5′and3′ends,respectively.TheClaI-SpeIfragmentsfromJMP4123andJMP4124wereligatedintoJMP918digestedbyClaI-SpeI,yieldingtheplasmidsJMP4137(pEYK300A3B)andJMP4139(pEYK300A3b),respectively.DeletionoftheEYK1geneTheEYK1disruptioncassettewasgeneratedbyPCRamplificationaccordingtoVandermiesandcolleagues[40].First,theupstream(Up)anddownstream(Dn)regionsoftheEYK1genewereamplifiedusingY.lipolyticaW29genomicDNAasthetemplatewiththeEYK-P-F/EYK-P-R-SfiIandEYK-T-L-SfiI/EYK-T-Rasprimerpairs.URA3exmarkerwasamplifiedfromJME803withtheprimerpairLPR-L-SfiI/LPR-R-SfiI(Table 2).AmpliconsweredigestedwithSfiIbeforebeingpurifiedandligated,usingT4DNAligase.TheligationproductwasamplifiedbyPCRusingtheprimerpairEYK-P-F/EYK-T-R.Theeyk1::URA3exdisruptioncassettewasfinallyusedtotransformY.lipolyticastrainPo1d.TheresultingstrainwasdesignatedRIY147(eyk1::URA3ex,Leu−).TheauxotrophicderivativeRIY176wasisolatedaftertransformationofRIY147withthereplicativeplasmidpRRQ2,accordingtoFickersandcolleagues[41],formarkerrescue(Table 2).TheprimersEYK-V1andEYK-V2(Table 2)wereusedforgenedisruptionverification.EYK1promotersequenceanalysisMultiplealignmentsofnucleotidesequenceofEYK1genepromotersamongtheYarrowiaclade:Y.lipolytica(YALI),Yarrowiaphangngensis(YAPH),Yarrowiayakushimensis(YAYA),Yarrowiaalimentaria(YAAL),andYarrowiagalli(YAGA)wereperformedusingclustalW2software[42]accordingtoLarkinandcolleagues[43].GenomesequencesofYarrowiaspecieswereassembledandannotatedbyCécileNeuvéglise,HugoDevillersandcoworkers(tobepublished).HomologuesofYALI0F01606ginYarrowiaspecieswereidentifiedbyBlastontheprivatesiteofGRYC(GenomeResourcesforYeastChromosomes;http://gryc.inra.fr)usingYALI0F01606ggeneastemplate.PromoterregionswereretrievedusingthedownloadfunctionalitydevelopedbyH.Devillers.AnalyticalmethodsCellgrowthwasmonitoredbyopticaldensity(OD600nm).Erythritol,erythrulose,glucoseandglycerolconcentrationsintheculturesupernatantweremeasuredbyHPLC(AgilentTechnologies1200series)usinganAminexHPX-87Hionexclusioncolumn(Biorad300 × 7.8 mm).Elutionwasperformedusing15 mMtrifluoroaceticacidasthemobilephaseataflowrateof0.5 mL/minandatemperatureof65 °C.Erythritol,glucoseandglycerolweredetectedusingarefractiveindexdetector(RID,AgilentTechnologies),whileerythrulosewasmeasuredat210 nmwithaUVdetector(AgilentTechnologies).ResultsanddiscussionEYK1promoterisinducedbyerythritolanderythruloseTodate,twodifferentpathwayshavebeenreportedforerythritolcatabolism.Inafirstone,erythritolisphosphorylatedintoerythritol-phosphateandthenoxidizedinerythrulose-phosphate[44].Inasecondone,erythritolisfirstconvertedintoerythrulosebeforebeingphosphorylatedintoerythrulose-phosphate[45].WehaverecentlyidentifiedandcharacterizedEYK1gene(YALI0F1606g)[46]inY.lipolytica.Disruptionofthelatterabolishedyeastgrowthonerythritolmedium,showingthatEYK1geneisinvolvedinerythritolcatabolism.Inaddition,a∆eyk1mutantwasfoundtoaccumulatel-erythrulose.Fromthis,ithasbeenconcludedthatEYK1encodeanerythrulosekinase(Eyk)andthaterythritolcatabolisminY.lipolyticafollowsthepathwaydepictedinFig. 1.Fig. 1ErythritolcatabolismpathwayinYarrowialipolytica.Basedon[45]and[46].Erythritolisconvertedintol-erythrulosebyanerythritoldehydrogenaseencodedbyEYD1,thenl-erythruloseisphosphorylatedbythel-erythrulose-1-kinaseencodedbyEYK1(YALI0F01606g)intol-erythrulose-1-phosphateFullsizeimage WethereforeexpectthatEYK1geneexpressionisregulatedbyerythrulose,thesubstrateofEyk,and/orbyerythritol.ToassesstheregulationoftheEYK1promoter,twofragmentsof450and300 bp,(EYK450andEYK300,respectively),correspondingtotheintergenicregionofgenesYALI0F01606gandYALI0F01628gwereusedtoconstructareportergenesystembasedonayellowfluorescentreporterprotein(YFP)(Fig. 2).Indeed,theYFPfluorescencewasusedtoquantifythepromoterinductionlevel.Fig. 2Schematicrepresentationofpromotersusedinthisstudy.SchematicrepresentationofthegenomiclocuscontainingtheupstreamgeneYALI0F01628gandtheEYK1gene,YALI0F01606g.aSchematicrepresentationofthenativepromoterspEYK450(TATAbox + nativeAbox + nativeBbox)andpEYK300(nativeAbox + nativeBbox)controllingtheexpressionofYFP;bSchematicrepresentationofthemutatedpromoterspEYK300aB(mutatedAbox + nativeBbox)andpEYK300Ab(nativeAbox + mutatedBbox)controllingtheexpressionofYFP;cSchematicrepresentationofthehybridpromoterspEYK300A3B(3Aboxes + nativeBbox)andpHu4EYK300(4tandemcopiesofUAS1xpr2 + nativeAbox + nativeBbox)controllingtheexpressionofYFP.Symbolsarewhitefilledsquare:TATAbox(T),blackfilledsquare:Abox(A),greyfilledsquare:Bbox(B),blackfilledtriangle:mutatedAbox,greyfilledtriangle:mutatedBbox,greyrightwardsarrow:YFPgene,rectangle:fourtandemcopiesofUAS1xpr2Fullsizeimage FragmentsEYK450andEYK300thatspanover438and 291 bpupstreamoftheEYK1startcodon(Fig. 2a),wereclonedinJMP1427asdescribedinMaterialsandmethodstoyieldplasmidsJMP3934(pEYK300)andJMP3994(pEYK450),respectively(Fig. 3).TheywerethenusedtotransformY.lipolyticastrainJMY2101.Severalindependenttransformants(3–6)wererandomlyselectedforeachconstructandthecorrespondingYFPfluorescencemeasuredduringcellgrowthonerythritolmedium(YNBOL).SincenodifferencesinYFPfluorescencelevel,andthuspromoterinduction,couldbeobserved(datanotshown),onetransformantofeachconstructwasusedforfurtherstudies,namelystrainsJMY6245(pEYK300-YPF)andJMY6375(pEYK450-YFP),respectively(Table 1).Fig. 3Schematicrepresentationofplasmidsconstructedinthisstudy.PlasmidpEYK300containedtheyellowfluorescentproteinYFP,underthe285 bppromoterregionoftheEYK1gene(erythrulosekinase;YALI0F01606g).ThevectorscontainthezetasequencefortargetingtheexpressioncassetteobtainedafterNotIdigestion.KanRandURA3markersareforselectioninE.coliandY.lipolytica,respectively.TheURA3isflankedbyLoxP/LoxRregionformarkerrescue(excisablemarkerURA3ex).JME3934(pEYK300-YPF);JME3994(pEYK450-YFP);JMP3988(pEYK300aB-YPF);JMP3991(pEYK300Ab-YPF);JMP4137(pEYK300A3B-YPF)-YPF;JMP4139(pEYK300A3b-YPF)andJMP3998(pHU4EYK300-YPF)Fullsizeimage CellgrowthandYFPfluorescencewerequantifiedovertimeduringcultureofstrainJMY6245inYNBminimalmediasupplementedwithglucose(YNBD),glycerol(YNBG),erythritol(YNBOL)anderythrulose(YNBOSE).Inmediumcontainingerythritol(YNBOL)anderythrulose(YNBOSE),YFPfluorescence,andthereforepEYK300inductionlevels,weresignificantlyhigherthaninthepresenceofglucose(YNBD)andglycerol(YNBG)(3157and4844 mSFUascomparedto344and357 mSFU,respectively)(Fig. 4a).ThisclearlyhighlightsthaterythruloseanderythritolpositivelyregulatepEYK300inductionbycontrasttoglucoseandglycerol.However,thelowfluorescencelevelsobservedinYNBDandYNBGmediumsuggestthatpEYK300isslightlyinducedbyglucoseandglycerol.After60 hofculture,thefluorescencelevelinmediumsupplementedwitherythrulosewas1.5-foldhigherthaninthepresenceoferythritol(3536and5904 SFU,respectively).Thissuggeststhaterythrulosecouldbeabetterinducerthanerythritol.ExperimentsperformedwithstrainJMY6375(pEYK450-YFP)inthesameexperimentalconditionsyieldedsimilarresults(datanotshown).Therefore,thepEYK300promoterseemstoencompassthedifferentregulatoryelementsrequestedforgeneexpression(UASandURS).Consequently,pEYK450promoterwasnotfurtheranalysedandwefocusedonlyonpEYK300promoterinfurtherexperiments.Fig. 4TimecourseofYFPfluorescencedependingonculturemediumfornativeEYK1andpTEFpromoters.Specificfluorescence(SFU)correspondingtotheexpressionofYFPunder:apEYK300(JMY6245)andbpTEF(JMY2878).GrowthinminimummediaYNBcontaining1%ofspecifiedcarbonsource(OLerythritol,OSEerythrulose,Ddextrose,Gglycerol)Fullsizeimage InordertoassessthestrengthofpEYK300inductionbyerythritolanderythrulose,itwascomparedtothestrengthofthestrongconstitutivepTEFpromoter.YFPfluorescenceofstrainJMY2876(pTEF-YFP)wasmeasuredinthesameexperimentalconditionsandcomparedtothatofstrainJMY6245.AsshowninFig. 4b,pTEFexpressionwassimilarinthefourmediatested,withfluorescencevaluesbeing1192,1369,1485and1016mSFUinYNBOL,YNBOSE,YNBDDandYNBG,respectively.ExpressionlevelsforpEYK300inYNBOLandYNBOSEwereinaverage2.6-and3.5-foldhigherthantheexpressionlevelofpTEF,respectively.IdentificationofEYK1regulatoryelementsInordertoidentifytheregulatoryelement(i.e.UAS)ofpEYK1,weanalysedthenucleotidesequenceoftheEYK1promoterregionusingtheintergenicregionbetweenYALI0F01628gandYALI0F01606g(Fig. 5;Additionalfile1:TableS1).BlastanalysisoftheEYK1promoterdidnotevidencedanyconservedmotifwithinYarrowialipolyticagenome(datanotshown).Therefore,wecomparedthepromoterregionoftheEYK1genetothosepresentinotherspeciesoftheYarrowiaclade(namely,Yarrowiaphangngensis,Yarrowiayakushimensis,YarrowiaalimentariaandYarrowiagallithathavebeenrecentlysequencedandannotatedinourlaboratory[47]andNeuvegliseN.,DevillersH.etcollaborator(unpublished).AlignmentoftheEYK1promotersequences(Fig. 5;Additionalfile1:TableS1)highlightedthreeputativeconservedelements;aputativeTATAbox(BoxTATA)andaconservedAmotif(BoxA)withthemainsignature[GGAAAGCCGCY]andaconservedBmotif(BoxB)withthemainsignature[CNTGCATWATCCGAYGAC].Fig. 5MultiplealignmentofEYKpromoter.AlignmentoftheintergenicregionbetweenYALI0F01628gandYALI0F01606ginYarrowialipolyticaandstrainsfromtheYarrowiacladehighlightingconservedblocsthatrepresentsputativeregulatoryelementsfortheexpressionandregulationoftheYALI0F01606ggenebyerythritolanderythrulose.BoxedCATandATGcorrespondtotheStopandstartcodonoftheYALI0F01628gandYALI0F01606g,respectively.ClaIandSpeIrestrictionsitesareunderlined.Localizationofp300primercontainingtheClaIsiteisindicatedabovethegenomicsequence.GenomicsequencesarefromY.lipolyticaW29(YALI;YALI0F01606g),Yarrowiaphangngensis(YAPH),Yarrowiayakushimensis(YAYA),Yarrowiaalimentaria(YAAL),andYarrowiagalli(YAGA).SequencesareinAdditionalfile1:Table S1.TheClaIsiteupstreamofthep300sequenceandtheSpeIsitesareunderlined.TheregioncontainingUAS1eykusedfortandemrepeatsconstructionisboxedFullsizeimage ThecomparisonofYFPfluorescenceunderpEYK450andpEYK300indicatesthattheTATAboxmaybeinvolvedintheexpressionofgeneYALIPF01628gratherthangeneYALI0F01606g.Thus,todeterminetheroleofBoxAandBoxBinpEYKregulation,twomutatedpromoters,namelypEYK300aBandpEYL300Ab,wereconstructedasdescribedinmaterialandmethodbyexchangeoftheClaI-SpeIfragment.MutationoftheconservedBoxAandBoxBwereperformedbyintroducingaMulIsite.ThemotifA[GGAAAGCCGCC]wasreplacedby[GGAACGCGTCC]andnamedmotifa.ThemotifB[CTTGCATAATCCGATGAC]wasreplacedby[CTTGT ACGCGT AGATGAC]andnamedmotifb.ThisyieldedtopEYK300aBandpEYK300Ab,respectively(Fig. 2b).ThemutatedpEYK300aBandpEYK300AbwereintroducedintostrainJMY2101(Po1dLeu+)togiverisetorepresentativestrainsJMY6369andJMY6372,respectively(Table 1).ForstrainJMY6369carryingthepEYK300aBmutantpromoter,YFPfluorescencewasremarkablyreducedinthepresenceoferythritol(YNBOL)anderythrulose(YNBOSE)(683and1481mSFU,respectively)(Fig. 6a).ThisobservationsuggestedthattheBoxAcorrespondstotheupstreamactivatingsequence(UAS1EYK1)requiredforthepromoterinductionbybotherythritolanderythrulose.Fig. 6TimecourseofYFPfluorescencedependingonculturemediumformutatedpEYK300promoter.Specificfluorescence(SFU)correspondingtotheexpressionofYFPunder:apromoterpEYK300withamutatedAbox;pEYK300aB(JMY6369)andbpromoterEYK300withamutatedBbox;pEYK300Ba(JMY6372).GrowthinminimummediaYNBcontaining1%ofspecifiedcarbonsource(OLerythritol,EOSE:erythruloseDdextrose,Gglycerol)Fullsizeimage Ontheopposite,themeanrelativeYFPfluorescencemeasuredforstrainJMY6372carryingthepEYK300Abmutatedpromoter(Fig. 6b),was2.4-foldhigherinthepresenceoferythritol(YNBOLmedium)thanforthenon-mutatedpEYK300promoterinthesameconditions(8389and3536SFUafter60 h,respectively).Incontrast,YFPfluorescenceinthepresenceoferythrulose(YNBOSEmedium)wasinthesamerangeasYFPfluorescenceofthenon-mutatedpromoter.Furthermore,pEYK300AbwaslessrepressedonglucosemediaascomparedtopEYK300(withameanspecificfluorescenceof718versus279 mSFU),suggestingthattheBboxmaybeinvolvedinglucoserepression.ThisclearlydemonstratesthatdomainAisinvolvedinerythritolanderythruloseinductionandthatdomainBmaybeinvolvedinglucoserepressionsinceexpressionofthepEYK300Abincreasedattheendofthecultureinglucosemedia,whichisnotthecaseinglycerolmedia.TamdemrepeatsofUAS1EYK1increasepromoterstrengthMulticopyrepeatsofUASelementsupstreamofapromoterhavebeenshowntoincreasepromoterstrength[30,31,34,48].Therefore,weconstructedpromoterpEYK300A3Bcomposedofthreerepeatsofthe48 bpUAS1EYK1fragmentencompassingtheBoxA(GGGAAGCGGAATCCCAAAAGGGAAAGCCGCCGCATTAAGCTCCACAGC)upstreamofthewild-typepEYK300promoter(Fig. 2c).TheresultingconstructwasintroducedintostrainJMY2101togiverisetostrainJMY6681.Promoterstrengthwasmonitoredinthepresenceofglucose(YNBD),glycerol(YNBG),erythritol(YNBOL)anderythrulose(YNBOSE)andcomparedtothatofpEYK300(strainJMY6245).AsshowninFig. 7a,YFPfluorescencemeasuredforpEYK300A3Bwas3.4-foldhigherinaverageinthepresenceoferythritolascomparedtopEYK300(10,538and3157 mSFU,respectively).Incontrast,inductionofpEYK300A3BwasfoundsimilarinaverageinthepresenceoferythruloseascomparedtopEYK300(5034and4844 mSFU,respectively).BycontrasttopreviousobservationwithpEYK300(Fig. 4),pEYK300A3Binductionlevelwas2.1-foldhigherinaverageinthepresenceoferythritolthanforerythrulose(10,538and5034 mSFU,respectively).SimilarexperimentsperformedwithstrainJMY6684(pEYK300A3b),showedthattheinductionprofileonYNBOLwasnotsignificantlydifferentfromtheoneofJMY6681(pEYK300A3B),exceptthatinductionwassignificantlylessrepressedbyglucoseandglycerol,confirmingthepreviousobservations(datanotshown).Fig. 7TimecourseofYFPexpressiondependingonmediaforEYKhybridpromoters.Specificfluorescence(SFU)correspondingtotheexpressionofYFPunder:apEYK300A3B(JMY6681)andbpHU4EYK300(JMY6380).GrowthinminimummediaYNBcontaining1%ofspecifiedcarbonsource(OLerythritol,OSEerythrulose,Ddextrose,Gglycerol)Fullsizeimage Sincetheinsertionofseveralcopiesofthe48 bpregionencompassingtheBoxAmotifresultedinastrongerpromoterinductionlevel,itcouldbeassumedthatincreasingthecopynumberofUAS1EYK1wouldallowtofinetunethestrengthofpromoterinduction.Indeed,severalstrongsynthetichybridpromotershavebeencreatedbyfusingtandemrepeatsofupstreamactivationsequence(UAS)upstreamtoacorepromoterregion.Thefirstone(hp4d)wasbasedonfourtandemrepeatsofthe108 bpUAS1XPR2oftheXPR2geneupstreamontheminimalLEU2corepromoter[30].LaterBlazekandcoworker’sconstructedhybridpromoterscontainingupto32copiesofUAS1XPR2oftheXPR2geneupstreamontheminimalLEU2corepromoterand16copiesofUAS1XPR2oftheXPR2geneupstreamofTEFcorepromotersofdifferentlength[31].PromoterstrengthincreasedwithcopynumberoftheUAS,andthebestoneshowedatenfoldincreaseexpressioncomparedtothepTEFpromoter.Similarexpressionlevelswereobtainedbyinsertingthreetandemcopiesofthe230 bpUAS1TEFupstreamofthepTEFpromoter[48]anditsexpressiondidnotvarysignificantlywithcarbonsource(glucose,sucrose,glycerolandoleicacid).TheonlystronginduciblepromoteristhePOX2one[22].OleicacidinduciblehybridsyntheticpromoterswereobtainedcomprisingeightcopiesofUAS1xpr2upstreamofthe100 bpproximalcorePOX2promoter.ThisUAS-corepromoterchimerashoweda4.2-foldhigherexpressionlevelinoleicacidmediathaninglucoseincontrasttoatwofoldhigherexpressionlevelforthe8copiesofUAS1xpr2upstreamofthe136 bpproximalcoreTEFpromoter[34].Hereweshowedthatahybridpromotercontainingtwoadditionaltandemcopiesoftheshort48 bpUAS1EYK1upstreamoftheEYK1promoterresultsina3.3-foldstrongerpromoter,thuswecouldexpecttobeabletoconstructstrongererythritol/erythruloseinduciblepromotersbyintroducingadditionaltandemrepeatsoftheUAS1EYK1.UAS1BfromXPR2enhancedpromoterstrengthwithoutaffectingerythritolanderythruloseinductionMadzakandcolleaguesreportedthatthefusionoffourtandemsrepeatsofUAS1BofXPR2geneupstreamofaminimalpromoteroftheLEU2gene(yieldingtheso-calledhp4dhybridpromoter)allowedasignificanttranscriptionalactivity[30].Inthesameline,wecombinedfourcopiesofUAS1XPR2(UAS1B)withthepEYK300promoterleadingtopromoterHU4EYK300(JME3998)(Fig. 2c).ThelatterwasintroducedintoJMY2101,givingrisetostrainJMY6380.TheregulationofthepHU4EYK300wasinvestigatedbymonitoringcellgrowthandYFPfluorescencelevelsduringcultureofstrainJMY6380inYNBmediumsupplementedwitherythritol(YNBOL),erythrulose(YNBOSE),glucose(YNBD)andglycerol(YNBG).AsshowninFig. 7b,YFPfluorescence,andthereforepromoterinductionwere17.1-and9.8-foldhigherinthepresenceoferythritol(YNBOLmedium)anderythrulose(YNBOSE)thanforpEYK300promoter(54,063and47,487 mSFUascomparedto3157and4844 mSFU,respectively).pHU4EYKwasinducedinstationaryphase(i.e.after60 hofculture,63,380 SFU)onglucosemedia(YNBD)incontrasttopEYK300(344 SFU).Nevertheless,pHU4EYKwasnotfoundhighlyexpressedonglycerolmedia.SincepHU4EYKpromoteryieldedmuchstrongerinductionandthusgeneexpression,itsregulationwasfurthercharacterisedinregardtothecellgrowthrateofstrainJMY6380andtotheinductioneffectoferythritolanderythruloseonpHU4EYK.HybridpromoterHU4EYK300isinduciblebyerythritolanderythruloseInordertofurthercharacterisetheregulationofthehybridpromoterpHU4EYK300,itsregulationwasanalysedatsteadystateinchemostatculture.Thisensuresthatoncethesteadystateisestablished,theeffectofanyperturbations—e.g.,theadditionofaknownamountofaspecificcompound(aninducerorarepressor)inthemedium—onpHU4EYK300inductioncanbespecificallyassessedovertime.TheregulationofpHU4EYK300wasinvestigatedinregardtothegrowthrateofstrainJMY6380andthecompositionoftheculturemedium,morespecificallyinthepresenceofamixtureofglycerol/erythritolorglycerol/erythrulose. GrowthratehasnoeffectonpHU4EYK300induction Yeastcellphysiologyisdirectlyinfluencedbythegrowthrate.WiththeaimtoevaluatetheinfluenceofcellgrowthrateonpHU4EYK300inductionbyerythritol,chemostatcultureswereperformedinYNBOLmediumattwodistinctdilutionrates(i.e.0.16and0.08 h−1).ThefluorescencelevelsofYFPweremonitoredbyflowcytometrytoassesstheinductionlevelatthesinglecelllevel.Nosignificantdifferenceinthepromoterinductionlevelscouldbeobservedforthetwodilutionratestested(datanotshown).Indeed,themeanrelativefluorescenceofthecellpopulationwasequalto8.86 ± 0.62 × 104RFUatD = 0.16 h−1,andto9.47 ± 0.31 × 104RFUatD = 0.08 h−1.Moreover,cytogramsshowedthatthecellpopulationishomogenouslyinducedinpresenceoferythritol(Additionalfile2:FigureS1).ErythritolanderythruloseconcentrationmodulatethestrengthpHU4EYK300inductioninthepresenceofglycerolToassesstheinfluenceofinducerconcentrationontheregulationofpHU4EYK300,chemostatculturesofJMY6380wereperformedonYNBGmediumatadilutionrateof0.2 h−1.Atsteadystate,differentamountsoferythritolorerythrulosewereinjectedinthebioreactortoreachafinalconcentrationof0.2and0.6%(hereafter0.2CSPand0.6CSP),respectively.Glycerol,erythritol,erythruloseandYFPfluorescenceweremonitoredfor8 hafterinduceraddition.Inallexperimentalconditionstested,glycerolconcentrationremainedalmostconstant(i.e.3 g/L)inthebioreactor,confirmingthatasteadystatewasmaintainedinthoseexperimentalconditions.AsshowninFig. 8,pHU4EYK300inductionlevelseemstobemodulatedbytheinducerconcentrationinthoseexperimentalconditions(i.e.inthepresenceofglycerol).For0.2CSP,inductionincreasedduringthethreefirsthoursafterinducer(erythritolanderythrulose)addition(Fig. 8a,c).After,whentheinducerconcentrationwasbelow1 g/L,itremainedalmostconstantforthenext6 h.Bycontrast,for0.6CSP,inductionincreasedalmostlinearlyduring8 hafterinduceraddition(Fig. 8b,d).Itisworthmentioningthattheamplitudeofinductionalsoseemstobecorrelatedtotheinducerconcentration.ThemaximalYFPfluorescenceandthuspHU4EYK300induction,obtainedafter8 hoferythritoladditionwashigherforthe0.6CSPthanforthe0.2CSP(1.4 × 103and1.1 × 103RFU,respectively).Similarobservationsweremadeforerythrulose.ThemaximalYFPfluorescenceobtained8 haftererythruloseadditionwashigherforthe0.6CSPthanforthe0.2CSP(2.5 × 103and1.1 × 103RFU,respectively).ItcouldalsobededucedfromFig. 8,thaterythruloseyieldstohigherinductionlevelthanerythritol,eveninthepresenceof3 g/Lofglycerol.TheseresultsobtainedfromachemostatexperimentconfirmtheobservationsmadeinFig. 7b,i.e.pHU4EYK300isastronginduciblepromoter,respondingtoerythritolandevenmoretoerythruloseasaninducer.Fig. 8InductionofhybridEYK1promoterpHU4EYK300incontinuousculturebyerythritol(a,b)andbyerythrulose(c,d).Erythritolorerythruloseandglycerolconcentrationsintheculturemedium,andrelativefluorescenceofthecellsduringchemostatofJMY6380(pHU4EYK300)onYNB-glycerolmedium(1%glycerol).aInductionwithapulseof0.2%oferythritol.bInductionwithapulseof0.6%oferythritol.cInductionwithapulseof0.2%oferythrulose.dInductionwithapulseof0.6%oferythrulose.Time0correspondstothetimeofthepulse.Symbolsare:blackfilledsquare:erythritolorerythrulose;opencircle:glycerol;blackfilledtriangle:relativefluorescence(×103).FigureillustratesrepresentativeexperimentsFullsizeimage DeletionofEYKenhancedpEYKexpressionErythritolanderythrulosecouldbeusedbyY.lipolyticaasmaincarbonsource(Fig. 1).AlthoughglycerolwasfoundtorepressEYK1promoter,experimentsinchemostatdemonstratedthatamixtureofglycerol/erythritolorglycerol/erythrulosecouldbeusedforinduction.Moreover,botherythritolanderythruloseinducedpHU4EYK300promoterinadose-dependentmanner(Fig. 8).Therefore,wehypothesisethatpEYKexpressioncouldbeenhancedbydeletionoftheEYK1gene,thuserythritolanderythrulosecouldserveasinducerswhileavoidingtheiruseascarbonsourcesforgrowth.Therefore,theauxotrophiceyk1∆strainRIY176(Table 2)wasconstructedasdescribedin“Methods”.TheexpressioncassettecarryingpEYK300-YFP-LEU2exwasthenintroducedintoRIY176,givingrisetostrainRIY180(JMY6637).Sinceeyk1∆couldnotgrowonerythritolanderythruloseassolecarbonsource,strainRIY180wasgrowninthepresenceofglucoseorglycerol,usedasenergysource.Therefore,JMY6245(pEYK300-WT)andRIY180(pEYK300-eyk1∆)weregrowninYNBDOL(glucose,erythritol),YNBGOL(glycerol,erythritol),YNBDOSE(glucose,erythrulose),orYNBGOSE(glycerol,erythrulose).Inductionofthepromoterswasfollowedduringtimeinmicroplateswithglucoseorglycerolforgrowth(0.25%)andwitherythritolorerythruloseforinduction(0.25%).AsshowninFig. 9,YFPexpressioninwild-typeandeyk1∆strainsinthepresenceoferythritoloccurredduringthegrowthphaseinmediacontaining0.25%ofglucoseor0.25%ofglycerol(Fig. 9a,b).YFPfluorescenceat34 hofgrowthwas8.3-and7.8-foldhigherintheeyk1∆straincomparedtothewild-typestraininglucoseandglycerol,respectively(25,672SFUversus3078SFUwithglucoseand19,478SFUversus2500SFUwithglycerol).Incontrast,inthepresenceoferythrulose,YFPexpressioninwild-typeandeyk1∆strainswassomewhatdelayedfromthegrowthphaseinmediacontaining0.25%ofglucoseor0.25%ofglycerol(Fig. 9c,d).However,YFPfluorescencewas4.9-and2.6-foldhigherintheeyk1∆straincomparedtothewild-typeinglucoseandglycerol,respectively(9106SFUversus2993SFUwithglucoseand7934SFUversus3564SFUwithglycerol).Fig. 9TimecourseofYFPfluorescenceinwild-typeandeyk1∆strainunderpEYK300.YFPfluorescenceunderpEYK300inwild-typeandeyk1∆mutant,JMY6245andJMY6638,respectively.GrowthinminimummediaYNBcontaining0.25%ofcarbonsourceand0.25%ofinducer.aGlucoseanderythritol.bGlycerolanderythritol.cGlucoseanderythrulose.dGlycerolanderythrulose.Symbolsarewild-type(square)andmutant(triangle).Growth(fullsymbols)andfluorescence(emptysymbols)Fullsizeimage ForstrainJMY6245(pEYK300-WT),theratesofincreaseofYFPfluorescenceinthepresenceoferythritolwere97and83 FU/hinglucoseandglycerol,respectively.Incomparison,inthemutanteyk1∆,theratesofincreaseofYFPfluorescencewere10.5-foldhigher(1034and875 FU/hinglucoseandglycerol,respectively).Similarly,inthepresenceoferythrulose,higherinductionlevelswereobtainedfortheeyk1∆mutant(pEYK300-eyk1∆)ascomparedtothenon-disruptedmutant(pEYK300-EYK1).TherateofYFPproductioninthemutantstrainwas6.1-foldhigheringlucoseascomparedtothewild-typestrain(4000and347 FU/h,respectively).Inthepresenceofglycerol,thisincreasewas7.3-fold(2527and875 FU/h,respectively).TheseresultsdemonstratethatexpressionlevelscouldbefurtherimprovedbyusingastraindeletedfortheEYK1gene.Insuchastrain,erythritolorerythrulosecouldbeusedasafreeinducerandindependentlyfromgrowth,forhavinginductioneitherduringthegrowthphaseordelayedfromthislatter.ConclusionsSeveralgroupshaveconstructedhybridpromotersbasedoncombinationofrepeatsofupstreamactivatingsequence(UAS),TATAboxandcorepromoterforgeneexpressioninY.lipolytica[30,31,34,48].Thisgaverisetohybridpromoterswithvariousstrengths,uptotenfoldhigherexpressionthantheconstitutivepTEFpromoter[32],thislateronebeingaconstitutivestrongpromotercommonlyusedforgeneexpressionandforpromoterstrengthcomparison.AmongthemarefewstronginduciblepromoterssuchaspICL1,pLIP2,pPOX2[23,24,25,49].TheLIP2andPOX2promotersareinduciblebyoleicacidwhichhasthedrawbacktorequireoilemulsionforinduction.Thisstudyhasidentifiedanewshortpromoter(136 bp)induciblebyerythritolorbyerythrulose.Furthermore,promotercomparisonallowedtoidentifyaveryshort(43 bp)upstreamactivatingsequence(UAS1EYK1)andapotentialupstreamregulatorysequence(URSEYK).ThisstudyhasgeneratednewhybridpromoterscombiningcoreEYKpromoterwitheitherUAS1EYK1orUAS1XPR2upstreamactivatingsequences,allowingatleastatenfoldhigherexpressionthanthepTEFpromoter.ThisopensthepathtothedesignofnewsyntheticpromoterscontainingUASEYKand/orURSEYKwithhighertandemrepeatsnumberorwithvariouscorepromoterstofurtherwidentheexpressionrangeandtheinductionprofiles.Thesepromotersarepoorlyexpressedinglucoseorglycerolandcouldbeinducedbyerythritolorbyerythrulosewithatremendousadvantageofbeingdosedependantthusallowingfinetuningofinductionwhichwillpermittovarythedegreesofexpressionthatcouldbeobtained.OnewouldbeeasilyabletoregulatetheexpressionleveldependingonUAS1EYK1copynumber,theinductiontimedependingontheinducerused(erythritolorbyerythrulose),theinductionleveldependingonthemediaandtheinducerconcentration.Onewillhavealsotochoiceusingerythritolorerythruloseasinducerandsourceofcarbonforgrowthoruseonlyasinducerina∆eyk1geneticbackground.TheseinduciblepromotersandUAS1EYK1expandthepartsavailableforproteinexpression[33]andforthedevelopmentoftoolsforgeneticengineeringsuchasadditionalmarkerforgenedeletionormarkerrescue[40,41]andforinducibleexpressionofgenesuchasCAS9forgenomeediting[50,51].ThesenewpromoterscouldbealsoapowerfultoolforfundamentalresearchaswasthedevelopmentoftheGAL1promoterinSaccharomycescerevisiae[52]. AbbreviationsCSP: carbonsourcepulse D: dilutionrate EYK1: erythrulosekinase FU: fluorescenceunits(flowcytometry) GRAS: generallyrecognizedassafe Leu/LEU2: 3-isopropylmalatedehydrogenasegene PCR: polymerasechainreaction SFU: specificfluorescenceunits(Biolector) mSFU: meanspecificfluorescence UAS: upstreamactivatingsequence Ura/URA3: orotidine-5′-phosphatedecarboxylase Vvm: volume(ofgas)pervolume(ofculturemedium)perminute YFP: yellowfluorescentprotein YNBD: YNB + glucose YNBG: YNB + glycerol YNBOL: YNB + erythritol YNBOSE: YNB + erythrulose YNBDOL: YNB + glucose + erythritol YNBGOL: YNB + glycerol + erythritol YNBDOSE: YNB + glucose + erythrulose YNBGOSE: YNB + glycerol + erythrulose ReferencesMadzakC.Yarrowialipolytica:recentachievementsinheterologousproteinexpressionandpathwayengineering.ApplMicrobiolBiotechnol.2015;99:4559–77.doi:10.1007/s00253-015-6624-z.CAS Article GoogleScholar MadzakC,BeckerichJM.HeterologousproteinexpressionandsecretioninYarrowialipolytica.In:BarthG,editor.Yarrowialipolytica.Springer:Berlin;2013.p.1–76.doi:10.1007/978-3-642-38583-4_1. GoogleScholar FickersP,BenettiP,WacheY,MartyA,MauersbergerS,SmitM,etal.HydrophobicsubstrateutilisationbytheyeastYarrowialipolytica,anditspotentialapplications.FEMSYeastRes.2005;5:527–43.doi:10.1016/j.femsyr.2004.09.004.CAS Article GoogleScholar NicaudJ-M.Yarrowialipolytica.Yeast.2012;29:409–18.doi:10.1002/yea.2921.CAS Article GoogleScholar BeopoulosA,CescutJ,HaddoucheR,UribelarreaJ-L,Molina-JouveC,NicaudJ-M.Yarrowialipolyticaasamodelforbio-oilproduction.ProgLipidRes.2009;48:375–87.doi:10.1016/j.plipres.2009.08.005.CAS Article GoogleScholar BeopoulosA,NicaudJ-M,GaillardinC.Anoverviewoflipidmetabolisminyeastsanditsimpactonbiotechnologicalprocesses.ApplMicrobiolBiotechnol.2011;90:1193–206.doi:10.1007/s00253-011-3212-8.CAS Article GoogleScholar ThevenieauF,NicaudJ-M.Microorganismsassourcesofoils.OCL.2013;20:D603.doi:10.1051/ocl/2013034.Article GoogleScholar BlazeckJ,HillA,LiuL,KnightR,MillerJ,PanA,etal.HarnessingYarrowialipolyticalipogenesistocreateaplatformforlipidandbiofuelproduction.NatCommun.2014;5:3131.doi:10.1038/ncomms4131.Article GoogleScholar FriedlanderJ,TsakraklidesV,KamineniA,GreenhagenEH,ConsiglioAL,MacEwenK,etal.EngineeringofahighlipidproducingYarrowialipolyticastrain.BiotechnolBiofuels.2016;9:77.doi:10.1186/s13068-016-0492-3.Article GoogleScholar GajdošP,NicaudJ-M,RossignolT,ČertíkM.SinglecelloilproductiononmolassesbyYarrowialipolyticastrainsoverexpressingDGA2inmulticopy.ApplMicrobiolBiotechnol.2015;99:8065–74.doi:10.1007/s00253-015-6733-8.Article GoogleScholar PoliJS,daSilvaMAN,SiqueiraEP,PasaVMD,RosaCA,ValenteP.MicrobiallipidproducedbyYarrowialipolyticaQU21usingindustrialwaste:apotentialfeedstockforbiodieselproduction.BioresourTechnol.2014;161:320–6.doi:10.1016/j.biortech.2014.03.083.CAS Article GoogleScholar TaiM,StephanopoulosG.EngineeringthepushandpulloflipidbiosynthesisinoleaginousyeastYarrowialipolyticaforbiofuelproduction.MetabEng.2013;15:1–9.doi:10.1016/j.ymben.2012.08.007.CAS Article GoogleScholar Ledesma-AmaroR,NicaudJ-M.Yarrowialipolyticaasabiotechnologicalchassistoproduceusualandunusualfattyacids.ProgLipidRes.2016;61:40–50.doi:10.1016/j.plipres.2015.12.001.CAS Article GoogleScholar XieD,JacksonEN,ZhuQ.Sustainablesourceofomega-3eicosapentaenoicacidfrommetabolicallyengineeredYarrowialipolytica:fromfundamentalresearchtocommercialproduction.ApplMicrobiolBiotechnol.2015;99:1599–610.doi:10.1007/s00253-014-6318-y.CAS Article GoogleScholar BeopoulosA,VerbekeJ,BordesF,GuicherdM,BressyM,MartyA,etal.MetabolicengineeringforricinoleicacidproductionintheoleaginousyeastYarrowialipolytica.ApplMicrobiolBiotechnol.2014;98:251–62.doi:10.1007/s00253-013-5295-x.CAS Article GoogleScholar ZhangB,ChenH,LiM,GuZ,SongY,RatledgeC,etal.GeneticengineeringofYarrowialipolyticaforenhancedproductionoftrans-10,cis-12conjugatedlinoleicacid.MicrobCellFactories.2013;12:70.doi:10.1186/1475-2859-12-70.Article GoogleScholar ImatoukeneN,VerbekeJ,BeopoulosA,TaghkiAI,ThomassetB,SardeC-O,etal.AmetabolicengineeringstrategyforproducingconjugatedlinoleicacidsusingtheoleaginousyeastYarrowialipolytica.ApplMicrobiolBiotechnol.2017;101:4605–16.doi:10.1007/s00253-017-8240-6.CAS Article GoogleScholar SmitMS,MokgoroMM,SetatiE,NicaudJ-M.α,ω-Dicarboxylicacidaccumulationbyacyl-CoAoxidasedeficientmutantsofYarrowialipolytica.BiotechnolLett.2005;27:859–64.doi:10.1007/s10529-005-6719-1.CAS Article GoogleScholar GroenewaldM,BoekhoutT,NeuvégliseC,GaillardinC,vanDijckPWM,WyssM.Yarrowialipolytica:safetyassessmentofanoleaginousyeastwithagreatindustrialpotential.CritRevMicrobiol.2014;40:187–206.doi:10.3109/1040841X.2013.770386.CAS Article GoogleScholar ZinjardeSS.Food-relatedapplicationsofYarrowialipolytica.FoodChem.2014;152:1–10.doi:10.1016/j.foodchem.2013.11.117.CAS Article GoogleScholar OgrydziakDM,ScharfSJ.AlkalineextracellularproteaseproducedbySaccharomycopsislipolyticaCX161-1B.JGenMicrobiol.1982;128:1225–34.doi:10.1099/00221287-128-6-1225.CAS GoogleScholar JuretzekT,WangH-J,NicaudJ-M,MauersbergerS,BarthG.Comparisonofpromoterssuitableforregulatedoverexpressionofβ-galactosidaseinthealkane-utilizingyeastYarrowialipolytica.BiotechnolBioprocessEng.2000;5:320–6.doi:10.1007/BF02942206.CAS Article GoogleScholar WangHJ,DallM-TL,WachéY,LarocheC,BelinJ-M,GaillardinC,etal.EvaluationofAcylCoenzymeAOxidase(Aox)IsozymeFunctioninthen-Alkane-AssimilatingYeastYarrowialipolytica.JBacteriol.1999;181:5140–8.CAS GoogleScholar PignèdeG,WangH,FudalejF,GaillardinC,SemanM,NicaudJ-M.CharacterizationofanExtracellularLipaseEncodedbyLIP2inYarrowialipolytica.JBacteriol.2000;182:2802–10.doi:10.1128/JB.182.10.2802-2810.2000.Article GoogleScholar SassiH,DelvigneF,KarT,NicaudJM,CoqAMCL,SteelsS,etal.DecipheringhowLIP2andPOX2promoterscanoptimallyregulaterecombinantproteinproductionintheyeastYarrowialipolytica.MicrobCellFactories.2016;15:159.doi:10.1186/s12934-016-0558-8.Article GoogleScholar WangX,SunY,KeF,ZhaoH,LiuT,XuL,etal.ConstitutiveexpressionofYarrowialipolyticalipaseLIP2inPichiapastorisusingGAPaspromoter.ApplBiochemBiotechnol.2012;166:1355–67.doi:10.1007/s12010-011-9524-4.CAS Article GoogleScholar HongS-P,SeipJ,Walters-PollakD,RupertR,JacksonR,XueZ,etal.EngineeringYarrowialipolyticatoexpresssecretoryinvertasewithstrongFBA1INpromoter.Yeast.2012;29:59–72.doi:10.1002/yea.1917.CAS Article GoogleScholar MadzakC,BeckerichJ-M.Heterologousproteinexpressionandsecretioninthenon-conventionalyeastYarrowialipolytica:areview.JBiotechnol.2004;109:63–81.doi:10.1016/j.jbiotec.2003.10.027.CAS Article GoogleScholar MadzakC,Blanchin-RolandS,CorderoOteroRR,GaillardinC.FunctionalanalysisofupstreamregulatingregionsfromtheYarrowialipolyticaXPR2promoter.Microbiology.1999;145:75–87.doi:10.1099/13500872-145-1-75.CAS Article GoogleScholar MadzakC,TrétonB,Blanchin-RolandS.Stronghybridpromotersandintegrativeexpression/secretionvectorsforquasi-constitutiveexpressionofheterologousproteinsintheyeastYarrowialipolytica.JMolMicrobiolBiotechnol.2000;2:207–16.CAS GoogleScholar BlazeckJ,LiuL,ReddenH,AlperH.TuningGeneExpressioninYarrowialipolyticabyaHybridPromoterApproach.ApplEnvironMicrobiol.2011;77:7905–14.doi:10.1128/aem.05763-11.CAS Article GoogleScholar MüllerS,SandalT,Kamp-HansenP,DalbøgeH.ComparisonofexpressionsystemsintheyeastsSaccharomycescerevisiae,Hansenulapolymorpha,Klyveromyceslactis,SchizosaccharomycespombeandYarrowialipolytica.CloningoftwonovelpromotersfromYarrowialipolytica.Yeast.1998;14:1267–83.doi:10.1002/(SICI)1097-0061(1998100)14:14<1267:AID-YEA327>3.0.CO;2-2.Article GoogleScholar DulermoR,BrunelF,DulermoT,Ledesma-AmaroR,VionJ,TrassaertM,etal.Usingavectorpoolcontainingvariable-strengthpromoterstooptimizeproteinproductioninYarrowialipolytica.MicrobCellFactories.2017;16:31.doi:10.1186/s12934-017-0647-3.Article GoogleScholar HussainMS,GambillL,SmithS,BlennerMA.EngineeringPromoterArchitectureinOleaginousYeastYarrowialipolytica.ACSSynthBiol.2016;5:213–23.doi:10.1021/acssynbio.5b00100.Article GoogleScholar BarthG,GaillardinC.Yarrowialipolytica.In:Nonconventionalyeastsinbiotechnology.Springer:Berlin;1996.p.313–88.SambrookJ,FritschEF,ManiatisT.Molecularcloning:alaboratorymanual.3rded.NY:ColdSpringHarborLaboratoryPress;1989. GoogleScholar MathWorks—MakersofMATLABandSimulink.http://www.mathworks.com/.Accessed1Jun2017.LeDallMT,NicaudJM,GaillardinC.Multiple-copyintegrationintheyeastYarrowialipolytica.CurrGenet.1994;26:38–44.Article GoogleScholar QuerolA,BarrioE,HuertaT,RamónD.Molecularmonitoringofwinefermentationsconductedbyactivedryyeaststrains.ApplEnvironMicrobiol.1992;58:2948–53.CAS GoogleScholar VandermiesM,DeniesO,NicaudJ-M,FickersP.EYK1encodingerythrulosekinaseasacatabolicselectablemarkerforgenomeeditinginthenon-conventionalyeastYarrowialipolytica.JMicrobiolMethods.2017;.doi:10.1016/j.mimet.2017.05.012. GoogleScholar FickersP,LeDallM,GaillardinC,ThonartP,NicaudJM.NewdisruptioncassettesforrapidgenedisruptionandmarkerrescueintheyeastYarrowialipolytica.JMicrobiolMethods.2003;55:727–37.doi:10.1016/j.mimet.2003.07.003.CAS Article GoogleScholar ClustalOmega
延伸文章資訊
- 1Engineered systems of inducible anti-repressors for the next ...
Recently, non-natural transcription factors (repressors) have been engineered and employed in syn...
- 2How to Choose the Right Inducible Gene Expression System ...
Here, we review a number of most commonly used mammalian inducible expression systems and provide...
- 3Biochemistry and biology of the inducible multifunctional ...
Here I review the biochemical and biological properties of TFII-I and related proteins in nuclear...
- 4Inducible gene expression: diverse regulatory mechanisms - Nature
- 5Tuning Gene Activity by Inducible and Targeted Regulation of ...
Functional genomics studies in minimal mycoplasma cells enable unobstructed access to some of the...