Exponential distribution - Wikipedia

文章推薦指數: 80 %
投票人數:10人

In probability theory and statistics, the exponential distribution is the probability distribution of the time between events in a Poisson point process, ... Exponentialdistribution FromWikipedia,thefreeencyclopedia Jumptonavigation Jumptosearch Probabilitydistribution Nottobeconfusedwiththeexponentialfamilyofprobabilitydistributions. Exponential Probabilitydensityfunction CumulativedistributionfunctionParameters λ > 0 , {\displaystyle\lambda>0,} rate,orinversescaleSupport x ∈ [ 0 , ∞ ) {\displaystylex\in[0,\infty)} PDF λ e − λ x {\displaystyle\lambdae^{-\lambdax}} CDF 1 − e − λ x {\displaystyle1-e^{-\lambdax}} Quantile − ln ⁡ ( 1 − p ) λ {\displaystyle-{\frac{\ln(1-p)}{\lambda}}} Mean 1 λ {\displaystyle{\frac{1}{\lambda}}} Median ln ⁡ 2 λ {\displaystyle{\frac{\ln2}{\lambda}}} Mode 0 {\displaystyle0} Variance 1 λ 2 {\displaystyle{\frac{1}{\lambda^{2}}}} Skewness 2 {\displaystyle2} Ex.kurtosis 6 {\displaystyle6} Entropy 1 − ln ⁡ λ {\displaystyle1-\ln\lambda} MGF λ λ − t ,  for  t < λ {\displaystyle{\frac{\lambda}{\lambda-t}},{\text{for}}t0istheparameterofthedistribution,oftencalledtherateparameter.Thedistributionissupportedontheinterval [0,∞).IfarandomvariableXhasthisdistribution,wewrite X~Exp(λ). Theexponentialdistributionexhibitsinfinitedivisibility. Cumulativedistributionfunction Thecumulativedistributionfunctionisgivenby F ( x ; λ ) = { 1 − e − λ x x ≥ 0 , 0 x < 0. {\displaystyleF(x;\lambda)={\begin{cases}1-e^{-\lambdax}&x\geq0,\\0&x<0.\end{cases}}} Alternativeparametrization Theexponentialdistributionissometimesparametrizedintermsofthescaleparameterβ=1/λ,whichisalsothemean: f ( x ; β ) = { 1 β e − x / β x ≥ 0 , 0 x < 0. F ( x ; β ) = { 1 − e − x / β x ≥ 0 , 0 x < 0. {\displaystylef(x;\beta)={\begin{cases}{\frac{1}{\beta}}e^{-x/\beta}&x\geq0,\\0&x<0.\end{cases}}\qquad\qquadF(x;\beta)={\begin{cases}1-e^{-x/\beta}&x\geq0,\\0&x<0.\end{cases}}} Properties Mean,variance,moments,andmedian Themeanistheprobabilitymasscentre,thatis,thefirstmoment. ThemedianisthepreimageF−1(1/2). ThemeanorexpectedvalueofanexponentiallydistributedrandomvariableXwithrateparameterλisgivenby E ⁡ [ X ] = 1 λ . {\displaystyle\operatorname{E}[X]={\frac{1}{\lambda}}.} Inlightoftheexamplesgivenbelow,thismakessense:ifyoureceivephonecallsatanaveragerateof2perhour,thenyoucanexpecttowaithalfanhourforeverycall. ThevarianceofXisgivenby Var ⁡ [ X ] = 1 λ 2 , {\displaystyle\operatorname{Var}[X]={\frac{1}{\lambda^{2}}},} sothestandarddeviationisequaltothemean. ThemomentsofX,for n ∈ N {\displaystylen\in\mathbb{N}} aregivenby E ⁡ [ X n ] = n ! λ n . {\displaystyle\operatorname{E}\left[X^{n}\right]={\frac{n!}{\lambda^{n}}}.} ThecentralmomentsofX,for n ∈ N {\displaystylen\in\mathbb{N}} aregivenby μ n = ! n λ n = n ! λ n ∑ k = 0 n ( − 1 ) k k ! . {\displaystyle\mu_{n}={\frac{!n}{\lambda^{n}}}={\frac{n!}{\lambda^{n}}}\sum_{k=0}^{n}{\frac{(-1)^{k}}{k!}}.} where !nisthesubfactorialofn ThemedianofXisgivenby m ⁡ [ X ] = ln ⁡ ( 2 ) λ < E ⁡ [ X ] , {\displaystyle\operatorname{m}[X]={\frac{\ln(2)}{\lambda}} s + t ∣ T > s ) = Pr ( T > t ) , ∀ s , t ≥ 0. {\displaystyle\Pr\left(T>s+t\midT>s\right)=\Pr(T>t),\qquad\foralls,t\geq0.} Thiscanbeseenbyconsideringthecomplementarycumulativedistributionfunction: Pr ( T > s + t ∣ T > s ) = Pr ( T > s + t ∩ T > s ) Pr ( T > s ) = Pr ( T > s + t ) Pr ( T > s ) = e − λ ( s + t ) e − λ s = e − λ t = Pr ( T > t ) . {\displaystyle{\begin{aligned}\Pr\left(T>s+t\midT>s\right)&={\frac{\Pr\left(T>s+t\capT>s\right)}{\Pr\left(T>s\right)}}\\[4pt]&={\frac{\Pr\left(T>s+t\right)}{\Pr\left(T>s\right)}}\\[4pt]&={\frac{e^{-\lambda(s+t)}}{e^{-\lambdas}}}\\[4pt]&=e^{-\lambdat}\\[4pt]&=\Pr(T>t).\end{aligned}}} WhenTisinterpretedasthewaitingtimeforaneventtooccurrelativetosomeinitialtime,thisrelationimpliesthat,ifTisconditionedonafailuretoobservetheeventoversomeinitialperiodoftimes,thedistributionoftheremainingwaitingtimeisthesameastheoriginalunconditionaldistribution.Forexample,ifaneventhasnotoccurredafter30seconds,theconditionalprobabilitythatoccurrencewilltakeatleast10moresecondsisequaltotheunconditionalprobabilityofobservingtheeventmorethan10secondsaftertheinitialtime. Theexponentialdistributionandthegeometricdistributionaretheonlymemorylessprobabilitydistributions. Theexponentialdistributionisconsequentlyalsonecessarilytheonlycontinuousprobabilitydistributionthathasaconstantfailurerate. Quantiles Tukeycriteriaforanomalies.[citationneeded] Thequantilefunction(inversecumulativedistributionfunction)forExp(λ)is F − 1 ( p ; λ ) = − ln ⁡ ( 1 − p ) λ , 0 ≤ p < 1 {\displaystyleF^{-1}(p;\lambda)={\frac{-\ln(1-p)}{\lambda}},\qquad0\leqp<1} Thequartilesaretherefore: firstquartile:ln(4/3)/λ median:ln(2)/λ thirdquartile:ln(4)/λ Andasaconsequencetheinterquartilerangeisln(3)/λ. Kullback–Leiblerdivergence ThedirectedKullback–Leiblerdivergenceinnatsof e λ {\displaystylee^{\lambda}} ("approximating"distribution)from e λ 0 {\displaystylee^{\lambda_{0}}} ('true'distribution)isgivenby Δ ( λ 0 ∥ λ ) = E λ 0 ( log ⁡ p λ 0 ( x ) p λ ( x ) ) = E λ 0 ( log ⁡ λ 0 e λ 0 x λ e λ x ) = log ⁡ ( λ 0 ) − log ⁡ ( λ ) − ( λ 0 − λ ) E λ 0 ( x ) = log ⁡ ( λ 0 ) − log ⁡ ( λ ) + λ λ 0 − 1. {\displaystyle{\begin{aligned}\Delta(\lambda_{0}\parallel\lambda)&=\mathbb{E}_{\lambda_{0}}\left(\log{\frac{p_{\lambda_{0}}(x)}{p_{\lambda}(x)}}\right)\\&=\mathbb{E}_{\lambda_{0}}\left(\log{\frac{\lambda_{0}e^{\lambda_{0}x}}{\lambdae^{\lambdax}}}\right)\\&=\log(\lambda_{0})-\log(\lambda)-(\lambda_{0}-\lambda)E_{\lambda_{0}}(x)\\&=\log(\lambda_{0})-\log(\lambda)+{\frac{\lambda}{\lambda_{0}}}-1.\end{aligned}}} Maximumentropydistribution Amongallcontinuousprobabilitydistributionswithsupport[0,∞)andmeanμ,theexponentialdistributionwithλ=1/μhasthelargestdifferentialentropy.Inotherwords,itisthemaximumentropyprobabilitydistributionforarandomvariateXwhichisgreaterthanorequaltozeroandforwhichE[X]isfixed.[1] Distributionoftheminimumofexponentialrandomvariables LetX1,…,Xnbeindependentexponentiallydistributedrandomvariableswithrateparametersλ1,…,λn.Then min { X 1 , … , X n } {\displaystyle\min\left\{X_{1},\dotsc,X_{n}\right\}} isalsoexponentiallydistributed,withparameter λ = λ 1 + ⋯ + λ n . {\displaystyle\lambda=\lambda_{1}+\dotsb+\lambda_{n}.} Thiscanbeseenbyconsideringthecomplementarycumulativedistributionfunction: Pr ( min { X 1 , … , X n } > x ) = Pr ( X 1 > x , … , X n > x ) = ∏ i = 1 n Pr ( X i > x ) = ∏ i = 1 n exp ⁡ ( − x λ i ) = exp ⁡ ( − x ∑ i = 1 n λ i ) . {\displaystyle{\begin{aligned}&\Pr\left(\min\{X_{1},\dotsc,X_{n}\}>x\right)\\={}&\Pr\left(X_{1}>x,\dotsc,X_{n}>x\right)\\={}&\prod_{i=1}^{n}\Pr\left(X_{i}>x\right)\\={}&\prod_{i=1}^{n}\exp\left(-x\lambda_{i}\right)=\exp\left(-x\sum_{i=1}^{n}\lambda_{i}\right).\end{aligned}}} Theindexofthevariablewhichachievestheminimumisdistributedaccordingtothecategoricaldistribution Pr ( X k = min { X 1 , … , X n } ) = λ k λ 1 + ⋯ + λ n . {\displaystyle\Pr\left(X_{k}=\min\{X_{1},\dotsc,X_{n}\}\right)={\frac{\lambda_{k}}{\lambda_{1}+\dotsb+\lambda_{n}}}.} Aproofcanbeseenbyletting I = argmin i ∈ { 1 , ⋯ , n } ⁡ { X 1 , … , X n } {\displaystyleI=\operatorname{argmin}_{i\in\{1,\dotsb,n\}}\{X_{1},\dotsc,X_{n}\}} .Then, Pr ( I = k ) = ∫ 0 ∞ Pr ( X k = x ) Pr ( ∀ i ≠ k X i > x ) d x = ∫ 0 ∞ λ k e − λ k x ( ∏ i = 1 , i ≠ k n e − λ i x ) d x = λ k ∫ 0 ∞ e − ( λ 1 + ⋯ + λ n ) x d x = λ k λ 1 + ⋯ + λ n . {\displaystyle{\begin{aligned}\Pr(I=k)&=\int_{0}^{\infty}\Pr(X_{k}=x)\Pr(\forall_{i\neqk}X_{i}>x)\,dx\\&=\int_{0}^{\infty}\lambda_{k}e^{-\lambda_{k}x}\left(\prod_{i=1,i\neqk}^{n}e^{-\lambda_{i}x}\right)dx\\&=\lambda_{k}\int_{0}^{\infty}e^{-\left(\lambda_{1}+\dotsb+\lambda_{n}\right)x}dx\\&={\frac{\lambda_{k}}{\lambda_{1}+\dotsb+\lambda_{n}}}.\end{aligned}}} Notethat max { X 1 , … , X n } {\displaystyle\max\{X_{1},\dotsc,X_{n}\}} isnotexponentiallydistributed,ifX1,…,Xndonotallhaveparameter0.[2] Jointmomentsofi.i.d.exponentialorderstatistics Let X 1 , … , X n {\displaystyleX_{1},\dotsc,X_{n}} be n {\displaystylen} independentandidenticallydistributedexponentialrandomvariableswithrateparameterλ. Let X ( 1 ) , … , X ( n ) {\displaystyleX_{(1)},\dotsc,X_{(n)}} denotethecorrespondingorderstatistics. For i < j {\displaystylei λ 2 {\displaystyle\lambda_{1}>\lambda_{2}} (withoutlossofgenerality),then H ( Z ) = 1 + γ + ln ⁡ ( λ 1 − λ 2 λ 1 λ 2 ) + ψ ( λ 1 λ 1 − λ 2 ) , {\displaystyle{\begin{aligned}H(Z)&=1+\gamma+\ln\left({\frac{\lambda_{1}-\lambda_{2}}{\lambda_{1}\lambda_{2}}}\right)+\psi\left({\frac{\lambda_{1}}{\lambda_{1}-\lambda_{2}}}\right),\end{aligned}}} where γ {\displaystyle\gamma} istheEuler-Mascheroniconstant,and ψ ( ⋅ ) {\displaystyle\psi(\cdot)} isthedigammafunction.[3] Inthecaseofequalrateparameters,theresultisanErlangdistributionwithshape2andparameter λ , {\displaystyle\lambda,} whichinturnisaspecialcaseofgammadistribution. Relateddistributions Thissectionincludesalistofgeneralreferences,butitlackssufficientcorrespondinginlinecitations.Pleasehelptoimprovethissectionbyintroducingmoreprecisecitations.(March2011)(Learnhowandwhentoremovethistemplatemessage) If X ∼ Laplace ⁡ ( μ , β − 1 ) {\displaystyleX\sim\operatorname{Laplace}\left(\mu,\beta^{-1}\right)} then|X−μ|~Exp(β). IfX~Pareto(1,λ)thenlog(X)~Exp(λ). IfX~SkewLogistic(θ),then log ⁡ ( 1 + e − X ) ∼ Exp ⁡ ( θ ) {\displaystyle\log\left(1+e^{-X}\right)\sim\operatorname{Exp}(\theta)} . IfXi~U(0,1)then lim n → ∞ n min ( X 1 , … , X n ) ∼ Exp ⁡ ( 1 ) {\displaystyle\lim_{n\to\infty}n\min\left(X_{1},\ldots,X_{n}\right)\sim\operatorname{Exp}(1)} Theexponentialdistributionisalimitofascaledbetadistribution: lim n → ∞ n Beta ⁡ ( 1 , n ) = Exp ⁡ ( 1 ) . {\displaystyle\lim_{n\to\infty}n\operatorname{Beta}(1,n)=\operatorname{Exp}(1).} Exponentialdistributionisaspecialcaseoftype3Pearsondistribution. IfX~Exp(λ)andXi~Exp(λi)then: k X ∼ Exp ⁡ ( λ k ) {\displaystylekX\sim\operatorname{Exp}\left({\frac{\lambda}{k}}\right)} ,closureunderscalingbyapositivefactor. 1 + X~BenktanderWeibull(λ,1),whichreducestoatruncatedexponentialdistribution. keX~Pareto(k,λ). e−X~Beta(λ,1). 1/keX~PowerLaw(k,λ) X ∼ Rayleigh ⁡ ( 1 2 λ ) {\displaystyle{\sqrt{X}}\sim\operatorname{Rayleigh}\left({\frac{1}{\sqrt{2\lambda}}}\right)} ,theRayleighdistribution X ∼ Weibull ⁡ ( 1 λ , 1 ) {\displaystyleX\sim\operatorname{Weibull}\left({\frac{1}{\lambda}},1\right)} ,theWeibulldistribution X 2 ∼ Weibull ⁡ ( 1 λ 2 , 1 2 ) {\displaystyleX^{2}\sim\operatorname{Weibull}\left({\frac{1}{\lambda^{2}}},{\frac{1}{2}}\right)} μ−βlog(λX)∼Gumbel(μ,β). ⌊ X ⌋ ∼ Geometric ⁡ ( 1 − e − λ ) {\displaystyle\lfloorX\rfloor\sim\operatorname{Geometric}\left(1-e^{-\lambda}\right)} ,ageometricdistributionon0,1,2,3,... ⌈ X ⌉ ∼ Geometric ⁡ ( 1 − e − λ ) {\displaystyle\lceilX\rceil\sim\operatorname{Geometric}\left(1-e^{-\lambda}\right)} ,ageometricdistributionon1,2,3,4,... IfalsoY~Erlang(n,λ)or Y ∼ Γ ( n , 1 λ ) {\displaystyleY\sim\Gamma\left(n,{\frac{1}{\lambda}}\right)} then X Y + 1 ∼ Pareto ⁡ ( 1 , n ) {\displaystyle{\frac{X}{Y}}+1\sim\operatorname{Pareto}(1,n)} Ifalsoλ~Gamma(k,θ)(shape,scaleparametrisation)thenthemarginaldistributionofXisLomax(k,1/θ),thegammamixture λ1X1−λ2Y2~Laplace(0,1). min{X1,...,Xn}~Exp(λ1+...+λn). Ifalsoλi=λthen: X 1 + ⋯ + X k = ∑ i X i ∼ {\displaystyleX_{1}+\cdots+X_{k}=\sum_{i}X_{i}\sim} Erlang(k,λ)=Gamma(k,λ−1)=Gamma(k,λ)(in(k,θ)and(α,β)parametrization,respectively)withanintegershapeparameterk.[4] Xi−Xj~Laplace(0,λ−1). IfalsoXiareindependent,then: X i X i + X j {\displaystyle{\frac{X_{i}}{X_{i}+X_{j}}}} ~U(0,1) Z = λ i X i λ j X j {\displaystyleZ={\frac{\lambda_{i}X_{i}}{\lambda_{j}X_{j}}}} hasprobabilitydensityfunction f Z ( z ) = 1 ( z + 1 ) 2 {\displaystylef_{Z}(z)={\frac{1}{(z+1)^{2}}}} .Thiscanbeusedtoobtainaconfidenceintervalfor λ i λ j {\displaystyle{\frac{\lambda_{i}}{\lambda_{j}}}} . Ifalsoλ=1: μ − β log ⁡ ( e − X 1 − e − X ) ∼ Logistic ⁡ ( μ , β ) {\displaystyle\mu-\beta\log\left({\frac{e^{-X}}{1-e^{-X}}}\right)\sim\operatorname{Logistic}(\mu,\beta)} ,thelogisticdistribution μ − β log ⁡ ( X i X j ) ∼ Logistic ⁡ ( μ , β ) {\displaystyle\mu-\beta\log\left({\frac{X_{i}}{X_{j}}}\right)\sim\operatorname{Logistic}(\mu,\beta)} μ−σlog(X)~GEV(μ,σ,0). Furtherif Y ∼ Γ ( α , β α ) {\displaystyleY\sim\Gamma\left(\alpha,{\frac{\beta}{\alpha}}\right)} then X Y ∼ K ⁡ ( α , β ) {\displaystyle{\sqrt{XY}}\sim\operatorname{K}(\alpha,\beta)} (K-distribution) Ifalsoλ=1/2thenX∼χ22;i.e.,Xhasachi-squareddistributionwith2degreesoffreedom.Hence: Exp ⁡ ( λ ) = 1 2 λ Exp ⁡ ( 1 2 ) ∼ 1 2 λ χ 2 2 ⇒ ∑ i = 1 n Exp ⁡ ( λ ) ∼ 1 2 λ χ 2 n 2 {\displaystyle\operatorname{Exp}(\lambda)={\frac{1}{2\lambda}}\operatorname{Exp}\left({\frac{1}{2}}\right)\sim{\frac{1}{2\lambda}}\chi_{2}^{2}\Rightarrow\sum_{i=1}^{n}\operatorname{Exp}(\lambda)\sim{\frac{1}{2\lambda}}\chi_{2n}^{2}} If X ∼ Exp ⁡ ( 1 λ ) {\displaystyleX\sim\operatorname{Exp}\left({\frac{1}{\lambda}}\right)} and Y ∣ X {\displaystyleY\midX} ~Poisson(X)then Y ∼ Geometric ⁡ ( 1 1 + λ ) {\displaystyleY\sim\operatorname{Geometric}\left({\frac{1}{1+\lambda}}\right)} (geometricdistribution) TheHoytdistributioncanbeobtainedfromexponentialdistributionandarcsinedistribution Otherrelateddistributions: Hyper-exponentialdistribution–thedistributionwhosedensityisaweightedsumofexponentialdensities. Hypoexponentialdistribution–thedistributionofageneralsumofexponentialrandomvariables. exGaussiandistribution–thesumofanexponentialdistributionandanormaldistribution. Statisticalinference Below,supposerandomvariableXisexponentiallydistributedwithrateparameterλ,and x 1 , … , x n {\displaystylex_{1},\dotsc,x_{n}} arenindependentsamplesfromX,withsamplemean x ¯ {\displaystyle{\bar{x}}} . Parameterestimation Themaximumlikelihoodestimatorforλisconstructedasfollows: Thelikelihoodfunctionforλ,givenanindependentandidenticallydistributedsamplex=(x1,…,xn)drawnfromthevariable,is: L ( λ ) = ∏ i = 1 n λ exp ⁡ ( − λ x i ) = λ n exp ⁡ ( − λ ∑ i = 1 n x i ) = λ n exp ⁡ ( − λ n x ¯ ) , {\displaystyleL(\lambda)=\prod_{i=1}^{n}\lambda\exp(-\lambdax_{i})=\lambda^{n}\exp\left(-\lambda\sum_{i=1}^{n}x_{i}\right)=\lambda^{n}\exp\left(-\lambdan{\overline{x}}\right),} where: x ¯ = 1 n ∑ i = 1 n x i {\displaystyle{\overline{x}}={\frac{1}{n}}\sum_{i=1}^{n}x_{i}} isthesamplemean. Thederivativeofthelikelihoodfunction'slogarithmis: d d λ ln ⁡ L ( λ ) = d d λ ( n ln ⁡ λ − λ n x ¯ ) = n λ − n x ¯   { > 0 , 0 < λ < 1 x ¯ , = 0 , λ = 1 x ¯ , < 0 , λ > 1 x ¯ . {\displaystyle{\frac{d}{d\lambda}}\lnL(\lambda)={\frac{d}{d\lambda}}\left(n\ln\lambda-\lambdan{\overline{x}}\right)={\frac{n}{\lambda}}-n{\overline{x}}\{\begin{cases}>0,&0{\frac{1}{\overline{x}}}.\end{cases}}} Consequently,themaximumlikelihoodestimatefortherateparameteris: λ ^ mle = 1 x ¯ = n ∑ i x i {\displaystyle{\widehat{\lambda}}_{\text{mle}}={\frac{1}{\overline{x}}}={\frac{n}{\sum_{i}x_{i}}}} Thisisnotanunbiasedestimatorof λ , {\displaystyle\lambda,} although x ¯ {\displaystyle{\overline{x}}} isanunbiased[5]MLE[6]estimatorof 1 / λ {\displaystyle1/\lambda} andthedistributionmean. Thebiasof λ ^ mle {\displaystyle{\widehat{\lambda}}_{\text{mle}}} isequalto b ≡ E ⁡ [ ( λ ^ mle − λ ) ] = λ n − 1 {\displaystyleb\equiv\operatorname{E}\left[\left({\widehat{\lambda}}_{\text{mle}}-\lambda\right)\right]={\frac{\lambda}{n-1}}} whichyieldsthebias-correctedmaximumlikelihoodestimator λ ^ mle ∗ = λ ^ mle − b ^ . {\displaystyle{\widehat{\lambda}}_{\text{mle}}^{*}={\widehat{\lambda}}_{\text{mle}}-{\widehat{b}}.} Approximateminimizerofexpectedsquarederror Assumeyouhaveatleastthreesamples.Ifweseekaminimizerofexpectedmeansquarederror(seealso:Bias–variancetradeoff)thatissimilartothemaximumlikelihoodestimate(i.e.amultiplicativecorrectiontothelikelihoodestimate)wehave: λ ^ = ( n − 2 n ) ( 1 x ¯ ) = n − 2 ∑ i x i {\displaystyle{\widehat{\lambda}}=\left({\frac{n-2}{n}}\right)\left({\frac{1}{\bar{x}}}\right)={\frac{n-2}{\sum_{i}x_{i}}}} Thisisderivedfromthemeanandvarianceoftheinverse-gammadistribution: Inv-Gamma ( n , λ ) {\textstyle{\mbox{Inv-Gamma}}(n,\lambda)} .[7] Fisherinformation TheFisherinformation,denoted I ( λ ) {\displaystyle{\mathcal{I}}(\lambda)} ,foranestimatoroftherateparameter λ {\displaystyle\lambda} isgivenas: I ( λ ) = E ⁡ [ ( ∂ ∂ λ log ⁡ f ( x ; λ ) ) 2 | λ ] = ∫ ( ∂ ∂ λ log ⁡ f ( x ; λ ) ) 2 f ( x ; λ ) d x {\displaystyle{\mathcal{I}}(\lambda)=\operatorname{E}\left[\left.\left({\frac{\partial}{\partial\lambda}}\logf(x;\lambda)\right)^{2}\right|\lambda\right]=\int\left({\frac{\partial}{\partial\lambda}}\logf(x;\lambda)\right)^{2}f(x;\lambda)\,dx} Plugginginthedistributionandsolvinggives: I ( λ ) = ∫ 0 ∞ ( ∂ ∂ λ log ⁡ λ e − λ x ) 2 λ e − λ x d x = ∫ 0 ∞ ( 1 λ − x ) 2 λ e − λ x d x = λ − 2 . {\displaystyle{\mathcal{I}}(\lambda)=\int_{0}^{\infty}\left({\frac{\partial}{\partial\lambda}}\log\lambdae^{-\lambdax}\right)^{2}\lambdae^{-\lambdax}\,dx=\int_{0}^{\infty}\left({\frac{1}{\lambda}}-x\right)^{2}\lambdae^{-\lambdax}\,dx=\lambda^{-2}.} Thisdeterminestheamountofinformationeachindependentsampleofanexponentialdistributioncarriesabouttheunknownrateparameter λ {\displaystyle\lambda} . Confidenceintervals The100(1−α)%confidenceintervalfortherateparameterofanexponentialdistributionisgivenby:[8] 2 n λ ^ χ 1 − α 2 , 2 n 2 < 1 λ < 2 n λ ^ χ α 2 , 2 n 2 {\displaystyle{\frac{2n}{{\widehat{\lambda}}\chi_{1-{\frac{\alpha}{2}},2n}^{2}}}0. Computationalmethods Generatingexponentialvariates Aconceptuallyverysimplemethodforgeneratingexponentialvariatesisbasedoninversetransformsampling:GivenarandomvariateUdrawnfromtheuniformdistributionontheunitinterval(0,1),thevariate T = F − 1 ( U ) {\displaystyleT=F^{-1}(U)} hasanexponentialdistribution,whereF−1isthequantilefunction,definedby F − 1 ( p ) = − ln ⁡ ( 1 − p ) λ . {\displaystyleF^{-1}(p)={\frac{-\ln(1-p)}{\lambda}}.} Moreover,ifUisuniformon(0,1),thensois1−U.Thismeansonecangenerateexponentialvariatesasfollows: T = − ln ⁡ ( U ) λ . {\displaystyleT={\frac{-\ln(U)}{\lambda}}.} OthermethodsforgeneratingexponentialvariatesarediscussedbyKnuth[15]andDevroye.[16] Afastmethodforgeneratingasetofready-orderedexponentialvariateswithoutusingasortingroutineisalsoavailable.[16] Seealso Deadtime–anapplicationofexponentialdistributiontoparticledetectoranalysis. Laplacedistribution,orthe"doubleexponentialdistribution". Relationshipsamongprobabilitydistributions Marshall–Olkinexponentialdistribution References ^Park,SungY.;Bera,AnilK.(2009)."Maximumentropyautoregressiveconditionalheteroskedasticitymodel"(PDF).JournalofEconometrics.Elsevier.150(2):219–230.doi:10.1016/j.jeconom.2008.12.014.Archivedfromtheoriginal(PDF)on2016-03-07.Retrieved2011-06-02. ^Michael,Lugo."Theexpectationofthemaximumofexponentials"(PDF).Archivedfromtheoriginal(PDF)on20December2016.Retrieved13December2016. ^Eckford,AndrewW.;Thomas,PeterJ.(2016)."Entropyofthesumoftwoindependent,non-identically-distributedexponentialrandomvariables".arXiv:1609.02911[cs.IT]. ^Ibe,OliverC.(2014).FundamentalsofAppliedProbabilityandRandomProcesses(2nd ed.).AcademicPress.p. 128.ISBN 9780128010358. ^RichardArnoldJohnson;DeanW.Wichern(2007).AppliedMultivariateStatisticalAnalysis.PearsonPrenticeHall.ISBN 978-0-13-187715-3.Retrieved10August2012. ^NIST/SEMATECHe-HandbookofStatisticalMethods ^Elfessi,Abdulaziz;Reineke,DavidM.(2001)."ABayesianLookatClassicalEstimation:TheExponentialDistribution".JournalofStatisticsEducation.9(1).doi:10.1080/10691898.2001.11910648. ^Ross,SheldonM.(2009).Introductiontoprobabilityandstatisticsforengineersandscientists(4th ed.).AssociatedPress.p. 267.ISBN 978-0-12-370483-2. ^Guerriero,V.(2012)."PowerLawDistribution:MethodofMulti-scaleInferentialStatistics".JournalofModernMathematicsFrontier.1:21–28. ^"Cumfreq,afreecomputerprogramforcumulativefrequencyanalysis". ^Ritzema,H.P.,ed.(1994).FrequencyandRegressionAnalysis.Chapter6in:DrainagePrinciplesandApplications,Publication16,InternationalInstituteforLandReclamationandImprovement(ILRI),Wageningen,TheNetherlands.pp. 175–224.ISBN 90-70754-33-9. ^Lawless,J.F.;Fredette,M.(2005)."Frequentistpredictionsintervalsandpredictivedistributions".Biometrika.92(3):529–542.doi:10.1093/biomet/92.3.529. ^Bjornstad,J.F.(1990)."PredictiveLikelihood:AReview".Statist.Sci.5(2):242–254.doi:10.1214/ss/1177012175. ^D.F.SchmidtandE.Makalic,"UniversalModelsfortheExponentialDistribution",IEEETransactionsonInformationTheory,Volume55,Number7,pp.3087–3090,2009doi:10.1109/TIT.2009.2018331 ^DonaldE.Knuth(1998).TheArtofComputerProgramming,volume2:SeminumericalAlgorithms,3rdedn.Boston:Addison–Wesley.ISBN 0-201-89684-2.Seesection3.4.1,p.133. ^abLucDevroye(1986).Non-UniformRandomVariateGeneration.NewYork:Springer-Verlag.ISBN 0-387-96305-7.SeechapterIX,section2,pp.392–401. Externallinks "Exponentialdistribution",EncyclopediaofMathematics,EMSPress,2001[1994] OnlinecalculatorofExponentialDistribution vteProbabilitydistributions(List)Discreteunivariatewithfinitesupport Benford Bernoulli beta-binomial binomial categorical hypergeometric negative Poissonbinomial Rademacher soliton discreteuniform Zipf Zipf–Mandelbrot withinfinitesupport betanegativebinomial Borel Conway–Maxwell–Poisson discretephase-type Delaporte extendednegativebinomial Flory–Schulz Gauss–Kuzmin geometric logarithmic mixedPoisson negativebinomial Panjer parabolicfractal Poisson Skellam Yule–Simon zeta Continuousunivariatesupportedonaboundedinterval arcsine ARGUS Balding–Nichols Bates beta betarectangular continuousBernoulli Irwin–Hall Kumaraswamy logit-normal noncentralbeta PERT raisedcosine reciprocal triangular U-quadratic uniform Wignersemicircle supportedonasemi-infiniteinterval Benini Benktander1stkind Benktander2ndkind betaprime Burr chi chi-squared noncentral inverse scaled Dagum Davis Erlang hyper exponential hyperexponential hypoexponential logarithmic F noncentral foldednormal Fréchet gamma generalized inverse gamma/Gompertz Gompertz shifted half-logistic half-normal Hotelling'sT-squared inverseGaussian generalized Kolmogorov Lévy log-Cauchy log-Laplace log-logistic log-normal log-t Lomax matrix-exponential Maxwell–Boltzmann Maxwell–Jüttner Mittag-Leffler Nakagami Pareto phase-type Poly-Weibull Rayleigh relativisticBreit–Wigner Rice truncatednormal type-2Gumbel Weibull discrete Wilks'slambda supportedonthewholerealline Cauchy exponentialpower Fisher'sz Gaussianq generalizednormal generalizedhyperbolic geometricstable Gumbel Holtsmark hyperbolicsecant Johnson'sSU Landau Laplace asymmetric logistic noncentralt normal(Gaussian) normal-inverseGaussian skewnormal slash stable Student'st type-1Gumbel Tracy–Widom variance-gamma Voigt withsupportwhosetypevaries generalizedchi-squared generalizedextremevalue generalizedPareto Marchenko–Pastur q-exponential q-Gaussian q-Weibull shiftedlog-logistic Tukeylambda Mixedunivariatecontinuous-discrete RectifiedGaussian Multivariate(joint) Discrete: Ewens multinomial Dirichlet negative Continuous: Dirichlet generalized multivariateLaplace multivariatenormal multivariatestable multivariatet normal-gamma inverse Matrix-valued: LKJ matrixnormal matrixt matrixgamma inversematrixgamma Wishart normal inverse normal-inverse Directional Univariate(circular)directional Circularuniform univariatevonMises wrappednormal wrappedCauchy wrappedexponential wrappedasymmetricLaplace wrappedLévy Bivariate(spherical) Kent Bivariate(toroidal) bivariatevonMises Multivariate vonMises–Fisher Bingham Degenerateandsingular Degenerate Diracdeltafunction Singular Cantor Families Circular compoundPoisson elliptical exponential naturalexponential location–scale maximumentropy mixture Pearson Tweedie wrapped Authoritycontrol:Nationallibraries Germany Retrievedfrom"https://en.wikipedia.org/w/index.php?title=Exponential_distribution&oldid=1082827254" Categories:ContinuousdistributionsExponentialsPoissonpointprocessesConjugatepriordistributionsExponentialfamilydistributionsInfinitelydivisibleprobabilitydistributionsSurvivalanalysisHiddencategories:ArticleswithshortdescriptionShortdescriptionmatchesWikidataWikipediapagessemi-protectedagainstvandalismAllarticleswithunsourcedstatementsArticleswithunsourcedstatementsfromSeptember2017Articleslackingin-textcitationsfromMarch2011Allarticleslackingin-textcitationsArticleswithGNDidentifiers Navigationmenu Personaltools NotloggedinTalkContributionsCreateaccountLogin Namespaces ArticleTalk English Views ReadViewsourceViewhistory More Search Navigation MainpageContentsCurrenteventsRandomarticleAboutWikipediaContactusDonate Contribute HelpLearntoeditCommunityportalRecentchangesUploadfile Tools WhatlinkshereRelatedchangesUploadfileSpecialpagesPermanentlinkPageinformationCitethispageWikidataitem Print/export DownloadasPDFPrintableversion Inotherprojects WikimediaCommons Languages العربيةAsturianuবাংলাCatalàČeštinaDeutschEestiΕλληνικάEspañolEuskaraفارسیFrançaisGalego한국어ItalianoעבריתMagyarNederlands日本語PolskiPortuguêsРусскийSimpleEnglishSlovenčinaSlovenščinaСрпски/srpskiSundaSuomiSvenskaไทยTürkçeУкраїнськаTiếngViệt粵語中文 Editlinks



請為這篇文章評分?