Exponential distribution | Properties, proofs, exercises - StatLect
文章推薦指數: 80 %
Expected value StatLect Index>Probabilitydistributions Exponentialdistribution byMarcoTaboga,PhD Theexponentialdistributionisacontinuousprobabilitydistributionusedto modelthetimeelapsedbeforeagiveneventoccurs. Sometimesitisalsocallednegativeexponentialdistribution. Tableofcontents HowthedistributionisusedWaitingtimeDefinitionTherateparameteranditsinterpretationExpectedvalueVarianceMomentgeneratingfunctionCharacteristicfunctionDistributionfunctionMoredetailsMemorylesspropertyThesumofexponentialrandomvariablesisaGammarandomvariableRelationtothePoissondistributionDiscretecounterpartDensityplotSolvedexercisesExercise1Exercise2Exercise3 Howthedistributionisused Theexponentialdistributionisoftenusedtoanswerinprobabilisticterms questionssuchas: Howmuchtimewillelapsebeforeanearthquakeoccursinagivenregion? Howlongdoweneedtowaituntilacustomerentersourshop? Howlongwillittakebeforeacallcenterreceivesthenextphonecall? Howlongwillapieceofmachineryworkwithoutbreakingdown? Allthesequestionsconcernthetimeweneedtowaitbeforeagivenevent occurs. Ifthiswaitingtimeisunknown,itisoftenappropriatetothinkofitasa randomvariablehavinganexponentialdistribution. Waitingtime Awaitingtime hasanexponentialdistributioniftheprobabilitythattheeventoccurs duringacertaintimeintervalisproportionaltothelengthofthattime interval. Moreprecisely, hasanexponentialdistributioniftheconditional probabilityis approximatelyproportionaltothelength ofthetimeintervalcomprisedbetweenthetimes and , foranytimeinstant . Inseveralpracticalsituationsthispropertyisrealistic.Thisisthereason whytheexponentialdistributioncanbeusedtomodelwaitingtimes. Definition Theexponentialdistributionischaracterizedasfollows. Definition Let beacontinuous randomvariable.Letits supportbetheset ofpositivereal numbers:Let . Wesaythat hasanexponentialdistributionwithparameter ifandonlyifits probabilitydensity function isThe parameter iscalledrateparameter. Arandomvariablehavinganexponentialdistributionisalsocalledan exponentialrandomvariable. Thefollowingisaproofthat isalegitimateprobabilitydensityfunction. Proof Non-negativityisobvious.Weneedtoprove thattheintegralof over equals . Thisisprovedas follows: Tobetterunderstandtheexponentialdistribution,youcanhavealookatits densityplots. Therateparameteranditsinterpretation Wehavementionedthattheprobabilitythattheeventoccursbetweentwodates and isproportionalto (conditionalontheinformationthatithasnotoccurredbefore ). Therateparameter istheconstantof proportionality:where isaninfinitesimalofhigherorderthan (i.e.afunctionof thatgoestozeromorequicklythan does). Theaboveproportionalityconditionisalsosufficienttocompletely characterizetheexponentialdistribution. Proposition Theproportionality conditionis satisfiedonlyif hasanexponentialdistribution. Proof Theconditionalprobability canbewritten asDenote by thedistributionfunction of , that is,and by itssurvival function:Then,Dividing bothsidesby , we obtainwhere isaquantitythattendsto when tendsto . Takinglimitsonbothsides,we obtainor, bythedefinitionof derivative:This differentialequationiseasilysolvedbyusingthechain rule:Taking theintegralfrom to ofbothsides,we getandorBut (because cannottakenegativevalues) impliesExponentiating bothsides,we obtainTherefore,orBut thedensityfunctionisthefirstderivativeofthedistribution function:and therightmosttermisthedensityofanexponentialrandomvariable. Therefore,theproportionalityconditionissatisfiedonlyif isanexponentialrandomvariable Expectedvalue Theexpectedvalueofanexponentialrandom variable is Proof It canbederivedas follows: Variance Thevarianceofanexponentialrandomvariable is Proof It canbederivedthankstotheusual varianceformula (): Momentgeneratingfunction Themomentgeneratingfunctionofan exponentialrandomvariable isdefinedforany : Proof The definitionofmomentgeneratingfunction givesOf course,theaboveintegralsconvergeonlyif , i.e.onlyif . Therefore,themomentgeneratingfunctionofanexponentialrandomvariable existsforall . Characteristicfunction Thecharacteristicfunctionofanexponential randomvariable is Proof By usingthedefinitionofcharacteristicfunctionandthefactthat we can writeWe nowcomputeseparatelythetwointegrals.Thefirstintegral isTherefore,which canberearrangedto yieldorThe secondintegral isTherefore,which canberearrangedto yieldorBy puttingpiecestogether,we get Distributionfunction Thedistributionfunctionofanexponentialrandomvariable is Proof If , thenbecause cannottakeonnegativevalues.If , then Moredetails Inthefollowingsubsectionsyoucanfindmoredetailsabouttheexponential distribution. Memorylessproperty Oneofthemostimportantpropertiesoftheexponentialdistributionisthe memorylessproperty: for any . Proof Thisisprovedas follows: isthetimeweneedtowaitbeforeacertaineventoccurs.Theaboveproperty saysthattheprobabilitythattheeventhappensduringatimeintervalof length isindependentofhowmuchtimehasalreadyelapsed () withouttheeventhappening. Thesumofexponentialrandom variablesisaGammarandomvariable Supposethat , , ..., are mutuallyindependentrandomvariableshaving exponentialdistributionwithparameter . Define Then,thesum isaGammarandomvariablewithparameters and . Proof Thisisprovedusingmomentgenerating functions(rememberthatthemomentgeneratingfunctionofasumofmutually independentrandomvariablesisjusttheproductoftheirmomentgenerating functions):The latteristhemomentgeneratingfunctionofaGammadistributionwith parameters and . So hasaGammadistribution,becausetworandomvariableshavethesame distributionwhentheyhavethesamemomentgeneratingfunction. Therandomvariable isalsosometimessaidtohaveanErlangdistribution. TheErlangdistributionisjustaspecialcaseoftheGammadistribution:a GammarandomvariableisanErlangrandomvariableonlywhenitcanbewritten asasumofexponentialrandomvariables. RelationtothePoissondistribution TheexponentialdistributionisstrictlyrelatedtothePoissondistribution. Supposethat aneventcanoccurmorethanonce; thetimeelapsedbetweentwosuccessiveoccurrencesisexponentially distributedandindependentofpreviousoccurrences. Then,thenumberofoccurrencesoftheeventwithinagivenunitoftimehasa Poissondistribution. WeinvitethereadertoseethelectureonthePoisson distributionforamoredetailedexplanationandanintuitivegraphical representationofthisfact. Discretecounterpart Theexponentialdistributionisthecontinuouscounterpartofthe geometric distribution,whichisinsteaddiscrete. Densityplot Thenextplotshowshowthedensityoftheexponentialdistributionchangesby changingtherateparameter: thefirstgraph(redline)istheprobabilitydensityfunctionofan exponentialrandomvariablewithrateparameter ; thesecondgraph(blueline)istheprobabilitydensityfunctionofan exponentialrandomvariablewithrateparameter . Thethinverticallinesindicatethemeansofthetwodistributions.Note that,byincreasingtherateparameter,wedecreasethemeanofthe distributionfrom to . Solvedexercises Belowyoucanfindsomeexerciseswithexplainedsolutions. Exercise1 Let beanexponentialrandomvariablewithparameter . Computethefollowing probability: Solution Firstofallwecanwritetheprobability asusing thefactthattheprobabilitythatacontinuousrandomvariabletakesonany specificvalueisequaltozero(seeContinuous randomvariablesandzero-probabilityevents).Now,theprobabilitycanbe writtenintermsofthedistributionfunctionof as Exercise2 Supposetherandomvariable hasanexponentialdistributionwithparameter . Computethefollowing probability: Solution Thisprobabilitycanbeeasilycomputed byusingthedistributionfunctionof : Exercise3 Whatistheprobabilitythatarandomvariable islessthanitsexpectedvalue,if hasanexponentialdistributionwithparameter ? Solution Theexpectedvalueofanexponential randomvariablewithparameter isThe probabilityabovecanbecomputedbyusingthedistributionfunctionof : Howtocite Pleaseciteas: Taboga,Marco(2021)."Exponentialdistribution",Lecturesonprobabilitytheoryandmathematicalstatistics.KindleDirectPublishing.Onlineappendix.https://www.statlect.com/probability-distributions/exponential-distribution. Thebooks Mostofthelearningmaterialsfoundonthiswebsitearenowavailableinatraditionaltextbookformat. ProbabilityandstatisticsMatrixalgebra Featuredpages Exponentialdistribution Waldtest Convergenceinprobability Convergenceindistribution Hypothesistesting Gammafunction Explore Bernoullidistribution Binomialdistribution Multinomialdistribution Mainsections Mathematicaltools Fundamentalsofprobability Probabilitydistributions Asymptotictheory Fundamentalsofstatistics Glossary About AboutStatlect Contacts Cookies,privacyandtermsofuse Glossaryentries Probabilitymassfunction Discreterandomvariable Alternativehypothesis Factorial Posteriorprobability Criticalvalue Share Toenhanceyourprivacy, weremovedthesocialbuttons, butdon'tforgettoshare.
延伸文章資訊
- 1Exponential Distribution (Definition, Formula, Mean ... - BYJU'S
Mean and Variance of Exponential Distribution ... Mean: The mean of the exponential distribution ...
- 2Exponential distribution - Wikipedia
Mean, variance, moments, and median
- 3Exponential Distribution | Memoryless Random Variable
We will now mathematically define the exponential distribution, and derive its mean and expected ...
- 4Expected value of an exponential random variable - Berkeley ...
Suppose that this distribution is governed by the exponential distribution with mean 100,000. Wha...
- 5Exponential distribution | Properties, proofs, exercises - StatLect
Expected value