Exponential Distribution (Definition, Formula ... - BYJU'S
文章推薦指數: 80 %
In Probability theory and statistics, the exponential distribution is a continuous probability distribution that often concerns the amount of time until some ... MathsMathArticleExponentialDistribution Previous Next ExponentialDistribution Inprobabilitytheory,theexponentialdistributionisdefinedastheprobabilitydistributionoftimebetweeneventsinthePoissonpointprocess.Theexponentialdistributionisconsideredasaspecialcaseofthegammadistribution.Also,theexponentialdistributionisthecontinuousanalogueofthegeometricdistribution.Inthisarticle,wewilldiscusswhatisexponentialdistribution,itsformula,mean,variance,memorylesspropertyofexponentialdistribution,andsolvedexamples. TableofContents: WhatisExponentialDistribution? Formula MeanandVariance MemorylessProperty SumofTwoIndependentExponentialRandomVariables ExponentialDistributionGraph Applications Example FAQs WhatisExponentialDistribution? InProbabilitytheoryandstatistics,theexponentialdistributionisacontinuousprobabilitydistributionthatoftenconcernstheamountoftimeuntilsomespecificeventhappens.Itisaprocessinwhicheventshappencontinuouslyandindependentlyataconstantaveragerate.Theexponentialdistributionhasthekeypropertyofbeingmemoryless.Theexponentialrandomvariablecanbeeithermoresmallvaluesorfewerlargervariables.Forexample,theamountofmoneyspentbythecustomerononetriptothesupermarketfollowsanexponentialdistribution. ExponentialDistributionFormula Thecontinuousrandomvariable,sayXissaidtohaveanexponentialdistribution,ifithasthefollowingprobabilitydensityfunction: \(\begin{array}{l}f_{X}(x|\lambda)=\left\{\begin{matrix}\lambdae^{-\lambdax}&for\x>0\\0&for\x\leq0\end{matrix}\right.\end{array}\) Where λiscalledthedistributionrate. MeanandVarianceofExponentialDistribution Mean: Themeanoftheexponentialdistributioniscalculatedusingtheintegrationbyparts. Mean=E[X]=\(\begin{array}{l}\int_{0}^{\infty}x\lambdae^{-\lambdax}dx\end{array}\) \(\begin{array}{l}=\lambda\left[\left|\frac{-xe^{-\lambdax}}{\lambda}\right|^{\infty}_{0}+\frac{1}{\lambda}\int_{0}^{\infty}e^{-\lambdax}dx\right]\end{array}\) \(\begin{array}{l}=\lambda\left[0+\frac{1}{\lambda}\frac{-e^{-\lambdax}}{\lambda}\right]^{\infty}_{0}\end{array}\) \(\begin{array}{l}=\lambda\frac{1}{\lambda^{2}}\end{array}\) \(\begin{array}{l}=\frac{1}{\lambda}\end{array}\) Hence,themeanoftheexponentialdistributionis1/λ. Variance: Tofindthevarianceoftheexponentialdistribution,weneedtofindthesecondmomentoftheexponentialdistribution,anditisgivenby: \(\begin{array}{l}E[X^{2}]=\int_{0}^{\infty}x^{2}\lambdae^{-\lambdax}=\frac{2}{\lambda^{2}}\end{array}\) Hence,thevarianceofthecontinuousrandomvariable,Xiscalculatedas: Var(X)=E(X2)-E(X)2 Now,substitutingthevalueofmeanandthesecondmomentoftheexponentialdistribution,weget, Var(X)\(\begin{array}{l}=\frac{2}{\lambda^{2}}-\frac{1}{\lambda^{2}}=\frac{1}{\lambda^{2}}\end{array}\) Thus,thevarianceoftheexponentialdistributionis1/λ2. MemorylessPropertyofExponentialDistribution Themostimportantpropertyoftheexponentialdistributionisthememorylessproperty.Thispropertyisalsoapplicabletothegeometricdistribution. Anexponentiallydistributedrandomvariable“X”obeystherelation: Pr(X>s+t|X>s)=Pr(X>t),foralls,t≥0 Now,letusconsiderthethecomplementarycumulativedistributionfunction: Pr(X>s+t|X>s) \(\begin{array}{l}=\frac{P_{r}(X>s+t\capX>s)}{P_{r}(X>s)}\end{array}\) \(\begin{array}{l}=\frac{P_{r}(X>s+t)}{P_{r}(X>s)}\end{array}\) \(\begin{array}{l}=\frac{e^{-\lambda(s+t)}}{e^{-\lambdas}}\end{array}\) =e-λt =Pr(X>t) Hence,Pr(X>s+t|X>s)=Pr(X>t) Thispropertyiscalledthememorylesspropertyoftheexponentialdistribution,aswedon’tneedtorememberwhentheprocesshasstarted. SumofTwoIndependentExponentialRandomVariables Theprobabilitydistributionfunctionofthetwoindependentrandomvariablesisthesumoftheindividualprobabilitydistributionfunctions. IfX1andX2arethetwoindependentexponentialrandomvariableswithrespecttotherateparametersλ1andλ2respectively,thenthesumoftwoindependentexponentialrandomvariablesisgivenbyZ=X1+X2. \(\begin{array}{l}f_{Z}z=\int_{-\infty}^{\infty}f_{X_{1}}(x_{1})f_{X_{2}}(z-x_{1})dx_{1}\end{array}\) \(\begin{array}{l}=\int_{0}^{z}\lambda_{1}e^{-\lambda_{1}x_{1}}\lambda_{2}e^{-\lambda_{2}(z-x_{1})}dx_{1}\end{array}\) \(\begin{array}{l}=\lambda_{1}\lambda_{2}e^{-\lambda_{2}z}\int_{0}^{z}e^{(\lambda_{2}-\lambda_{1})x_{1}}dx_{1}\end{array}\) \(\begin{array}{l}=\left\{\begin{matrix}\frac{\lambda_{1}\lambda_{2}}{\lambda_{2}-\lambda_{1}}(e^{-\lambda_{1}z}-e^{-\lambda_{2}z})&if\\lambda_{1}\neq\lambda_{2}\\\lambda^{2}ze^{-\lambdaz}&if\\lambda_{1}=\lambda_{2}=\lambda\end{matrix}\right.\end{array}\) ExponentialDistributionFormula ExponentialDistributionCalculator PoissonDistributionFormula ExponentialDistributionGraph Theexponentialdistributiongraphisagraphoftheprobabilitydensityfunctionwhichshowsthedistributionofdistanceortimetakenbetweenevents.Thetwotermsusedintheexponentialdistributiongraphislambda(λ)andx.Here,lambdarepresentstheeventsperunittimeandxrepresentsthetime.Thefollowinggraphshowsthevaluesfor λ=1and λ=2. ExponentialDistributionApplications Oneofthewidelyusedcontinuousdistributionistheexponentialdistribution.Ithelpstodeterminethetimeelapsedbetweentheevents.Itisusedinarangeofapplicationssuchasreliabilitytheory,queuingtheory,physicsandsoon.Someofthefieldsthataremodelledbytheexponentialdistributionareasfollows: ExponentialdistributionhelpstofindthedistancebetweenmutationsonaDNAstrand Calculatingthetimeuntiltheradioactiveparticledecays. Helpsonfindingtheheightofdifferentmoleculesinagasatthestabletemperatureandpressureinauniformgravitationalfield Helpstocomputethemonthlyandannualhighestvaluesofregularrainfallandriveroutflowvolumes ExponentialDistributionProblem Example: Assumethat,youusuallyget2phonecallsperhour.calculatetheprobability,thataphonecallwillcomewithinthenexthour. Solution: Itisgiventhat,2phonecallsperhour.So,itwouldexpectthatonephonecallateveryhalf-an-hour.So,wecantake λ=0.5 So,thecomputationisasfollows: \(\begin{array}{l}p(0\leqX\leq1)=\sum_{x=0}^{1}0.5e^{-0.5x}\end{array}\) =0.393469 Therefore,theprobabilityofarrivingthephonecallswithinthenexthouris 0.393469 StaytunedwithBYJU’S–TheLearningAppanddownloadtheapptolearnwitheasebyexploringmoreMaths-relatedvideos. FrequentlyAskedQuestionsonExponentialDistributionWhatismeantbyexponentialdistribution? Theexponentialdistributionisaprobabilitydistributionfunctionthatiscommonlyusedtomeasuretheexpectedtimeforaneventtohappen. WhatisthedifferencebetweenthePoissondistributionandexponentialdistribution? Poissondistributiondealswiththenumberofoccurrencesofeventsinafixedperiodoftime,whereastheexponentialdistributionisacontinuousprobabilitydistributionthatoftenconcernstheamountoftimeuntilsomespecificeventhappens. Whatisthemeanandthevarianceoftheexponentialdistribution? Themeanoftheexponentialdistributionis1/λandthevarianceoftheexponentialdistributionis1/λ2. Whyistheexponentialdistributionmemoryless? Thekeypropertyoftheexponentialdistributionismemorylessasthepasthasnoimpactonitsfuturebehaviour,andeachinstantislikethestartingofthenewrandomperiod. Whatdoeslambdameanintheexponentialdistribution? Thelambdainexponentialdistributionrepresentstherateparameter,anditdefinesthemeannumberofeventsinaninterval. MATHSRelatedLinks DifferenceBetweenSimpleAndCompoundInterest CircumferenceOfCylinderFormula CrossMultiplicationMethod LengthUnitConversionTable SimpleAlgebraProblems FactorsOf80 VolumeOfCuboidFormula Tan90Degrees Important4MarksQuestionsForCBSE12Maths IntroductionToCoordinateGeometry CBSESamplePapers CBSESamplePapersClass8Maths CBSESamplePapersClass9Maths CBSESamplePapersClass10Maths CBSESamplePapersClass11Maths CBSESamplePapersClass12Maths CBSEPreviousYearQuestionPapers CBSEPreviousYearQuestionPapersClass12Maths CBSEPreviousYearQuestionPapersClass10Maths ICSESamplePapers ICSESamplePapersClass8Maths ICSESamplePapersClass9Maths ICSESamplePapersClass10Maths ISCSamplePapersClass11Maths ISCSamplePapersClass12Maths ICSEPreviousYearQuestionPapers ICSEPreviousYearQuestionPapersClass10 ISCPreviousYearQuestionPapersClass12Maths JoinBYJU'SLearningProgram Grade/Exam Class1 Class2 Class3 Class4 Class5 Class6 Class7 Class8 Class9 Class10 Class11 Class12 IAS CAT BankExam GATE Submit × BookaFreeClass Share Share Share CallUs RegisterwithBYJU'S&DownloadFreePDFs * SendOTP * * * * * Grade Class1 Class2 Class3 Class4 Class5 Class6 Class7 Class8 Class9 Class10 Class11 Class12 IAS CAT BankExam DownloadNow BOOK FreeClass BOOK FreeClass
延伸文章資訊
- 11.3.6.6.7. Exponential Distribution
The exponential distribution is primarily used in reliability applications. The exponential distr...
- 2指數分布- 維基百科,自由的百科全書
在機率論和統計學中,指數分布(英語:Exponential distribution)是一種連續機率分布。指數分布可以用來表示獨立隨機事件發生的時間間隔,比如旅客進入機場的時間 ...
- 3Exponential distribution - Wikipedia
In probability theory and statistics, the exponential distribution is the probability distributio...
- 4Exponential Distribution (Definition, Formula ... - BYJU'S
In Probability theory and statistics, the exponential distribution is a continuous probability di...
- 5The Exponential Distribution – Introductory Statistics
The exponential distribution is often concerned with the amount of time until some specific event...