Exponential Distribution (Definition, Formula ... - BYJU'S

文章推薦指數: 80 %
投票人數:10人

In Probability theory and statistics, the exponential distribution is a continuous probability distribution that often concerns the amount of time until some ... MathsMathArticleExponentialDistribution Previous Next ExponentialDistribution Inprobabilitytheory,theexponentialdistributionisdefinedastheprobabilitydistributionoftimebetweeneventsinthePoissonpointprocess.Theexponentialdistributionisconsideredasaspecialcaseofthegammadistribution.Also,theexponentialdistributionisthecontinuousanalogueofthegeometricdistribution.Inthisarticle,wewilldiscusswhatisexponentialdistribution,itsformula,mean,variance,memorylesspropertyofexponentialdistribution,andsolvedexamples. TableofContents: WhatisExponentialDistribution? Formula MeanandVariance MemorylessProperty SumofTwoIndependentExponentialRandomVariables ExponentialDistributionGraph Applications Example FAQs WhatisExponentialDistribution? InProbabilitytheoryandstatistics,theexponentialdistributionisacontinuousprobabilitydistributionthatoftenconcernstheamountoftimeuntilsomespecificeventhappens.Itisaprocessinwhicheventshappencontinuouslyandindependentlyataconstantaveragerate.Theexponentialdistributionhasthekeypropertyofbeingmemoryless.Theexponentialrandomvariablecanbeeithermoresmallvaluesorfewerlargervariables.Forexample,theamountofmoneyspentbythecustomerononetriptothesupermarketfollowsanexponentialdistribution. ExponentialDistributionFormula Thecontinuousrandomvariable,sayXissaidtohaveanexponentialdistribution,ifithasthefollowingprobabilitydensityfunction: \(\begin{array}{l}f_{X}(x|\lambda)=\left\{\begin{matrix}\lambdae^{-\lambdax}&for\x>0\\0&for\x\leq0\end{matrix}\right.\end{array}\) Where λiscalledthedistributionrate. MeanandVarianceofExponentialDistribution Mean: Themeanoftheexponentialdistributioniscalculatedusingtheintegrationbyparts. Mean=E[X]=\(\begin{array}{l}\int_{0}^{\infty}x\lambdae^{-\lambdax}dx\end{array}\) \(\begin{array}{l}=\lambda\left[\left|\frac{-xe^{-\lambdax}}{\lambda}\right|^{\infty}_{0}+\frac{1}{\lambda}\int_{0}^{\infty}e^{-\lambdax}dx\right]\end{array}\) \(\begin{array}{l}=\lambda\left[0+\frac{1}{\lambda}\frac{-e^{-\lambdax}}{\lambda}\right]^{\infty}_{0}\end{array}\) \(\begin{array}{l}=\lambda\frac{1}{\lambda^{2}}\end{array}\) \(\begin{array}{l}=\frac{1}{\lambda}\end{array}\) Hence,themeanoftheexponentialdistributionis1/λ. Variance: Tofindthevarianceoftheexponentialdistribution,weneedtofindthesecondmomentoftheexponentialdistribution,anditisgivenby: \(\begin{array}{l}E[X^{2}]=\int_{0}^{\infty}x^{2}\lambdae^{-\lambdax}=\frac{2}{\lambda^{2}}\end{array}\) Hence,thevarianceofthecontinuousrandomvariable,Xiscalculatedas: Var(X)=E(X2)-E(X)2 Now,substitutingthevalueofmeanandthesecondmomentoftheexponentialdistribution,weget, Var(X)\(\begin{array}{l}=\frac{2}{\lambda^{2}}-\frac{1}{\lambda^{2}}=\frac{1}{\lambda^{2}}\end{array}\) Thus,thevarianceoftheexponentialdistributionis1/λ2. MemorylessPropertyofExponentialDistribution Themostimportantpropertyoftheexponentialdistributionisthememorylessproperty.Thispropertyisalsoapplicabletothegeometricdistribution. Anexponentiallydistributedrandomvariable“X”obeystherelation:  Pr(X>s+t|X>s)=Pr(X>t),foralls,t≥0 Now,letusconsiderthethecomplementarycumulativedistributionfunction: Pr(X>s+t|X>s) \(\begin{array}{l}=\frac{P_{r}(X>s+t\capX>s)}{P_{r}(X>s)}\end{array}\) \(\begin{array}{l}=\frac{P_{r}(X>s+t)}{P_{r}(X>s)}\end{array}\) \(\begin{array}{l}=\frac{e^{-\lambda(s+t)}}{e^{-\lambdas}}\end{array}\) =e-λt =Pr(X>t) Hence,Pr(X>s+t|X>s)=Pr(X>t) Thispropertyiscalledthememorylesspropertyoftheexponentialdistribution,aswedon’tneedtorememberwhentheprocesshasstarted. SumofTwoIndependentExponentialRandomVariables Theprobabilitydistributionfunctionofthetwoindependentrandomvariablesisthesumoftheindividualprobabilitydistributionfunctions.  IfX1andX2arethetwoindependentexponentialrandomvariableswithrespecttotherateparametersλ1andλ2respectively,thenthesumoftwoindependentexponentialrandomvariablesisgivenbyZ=X1+X2. \(\begin{array}{l}f_{Z}z=\int_{-\infty}^{\infty}f_{X_{1}}(x_{1})f_{X_{2}}(z-x_{1})dx_{1}\end{array}\) \(\begin{array}{l}=\int_{0}^{z}\lambda_{1}e^{-\lambda_{1}x_{1}}\lambda_{2}e^{-\lambda_{2}(z-x_{1})}dx_{1}\end{array}\) \(\begin{array}{l}=\lambda_{1}\lambda_{2}e^{-\lambda_{2}z}\int_{0}^{z}e^{(\lambda_{2}-\lambda_{1})x_{1}}dx_{1}\end{array}\) \(\begin{array}{l}=\left\{\begin{matrix}\frac{\lambda_{1}\lambda_{2}}{\lambda_{2}-\lambda_{1}}(e^{-\lambda_{1}z}-e^{-\lambda_{2}z})&if\\lambda_{1}\neq\lambda_{2}\\\lambda^{2}ze^{-\lambdaz}&if\\lambda_{1}=\lambda_{2}=\lambda\end{matrix}\right.\end{array}\) ExponentialDistributionFormula ExponentialDistributionCalculator PoissonDistributionFormula ExponentialDistributionGraph Theexponentialdistributiongraphisagraphoftheprobabilitydensityfunctionwhichshowsthedistributionofdistanceortimetakenbetweenevents.Thetwotermsusedintheexponentialdistributiongraphislambda(λ)andx.Here,lambdarepresentstheeventsperunittimeandxrepresentsthetime.Thefollowinggraphshowsthevaluesfor λ=1and λ=2. ExponentialDistributionApplications Oneofthewidelyusedcontinuousdistributionistheexponentialdistribution.Ithelpstodeterminethetimeelapsedbetweentheevents.Itisusedinarangeofapplicationssuchasreliabilitytheory,queuingtheory,physicsandsoon.Someofthefieldsthataremodelledbytheexponentialdistributionareasfollows: ExponentialdistributionhelpstofindthedistancebetweenmutationsonaDNAstrand Calculatingthetimeuntiltheradioactiveparticledecays. Helpsonfindingtheheightofdifferentmoleculesinagasatthestabletemperatureandpressureinauniformgravitationalfield Helpstocomputethemonthlyandannualhighestvaluesofregularrainfallandriveroutflowvolumes ExponentialDistributionProblem Example: Assumethat,youusuallyget2phonecallsperhour.calculatetheprobability,thataphonecallwillcomewithinthenexthour. Solution: Itisgiventhat,2phonecallsperhour.So,itwouldexpectthatonephonecallateveryhalf-an-hour.So,wecantake λ=0.5 So,thecomputationisasfollows: \(\begin{array}{l}p(0\leqX\leq1)=\sum_{x=0}^{1}0.5e^{-0.5x}\end{array}\) =0.393469 Therefore,theprobabilityofarrivingthephonecallswithinthenexthouris 0.393469 StaytunedwithBYJU’S–TheLearningAppanddownloadtheapptolearnwitheasebyexploringmoreMaths-relatedvideos. FrequentlyAskedQuestionsonExponentialDistributionWhatismeantbyexponentialdistribution? Theexponentialdistributionisaprobabilitydistributionfunctionthatiscommonlyusedtomeasuretheexpectedtimeforaneventtohappen. WhatisthedifferencebetweenthePoissondistributionandexponentialdistribution? Poissondistributiondealswiththenumberofoccurrencesofeventsinafixedperiodoftime,whereastheexponentialdistributionisacontinuousprobabilitydistributionthatoftenconcernstheamountoftimeuntilsomespecificeventhappens. Whatisthemeanandthevarianceoftheexponentialdistribution? Themeanoftheexponentialdistributionis1/λandthevarianceoftheexponentialdistributionis1/λ2. Whyistheexponentialdistributionmemoryless? Thekeypropertyoftheexponentialdistributionismemorylessasthepasthasnoimpactonitsfuturebehaviour,andeachinstantislikethestartingofthenewrandomperiod. Whatdoeslambdameanintheexponentialdistribution? Thelambdainexponentialdistributionrepresentstherateparameter,anditdefinesthemeannumberofeventsinaninterval. MATHSRelatedLinks DifferenceBetweenSimpleAndCompoundInterest CircumferenceOfCylinderFormula CrossMultiplicationMethod LengthUnitConversionTable SimpleAlgebraProblems FactorsOf80 VolumeOfCuboidFormula Tan90Degrees Important4MarksQuestionsForCBSE12Maths IntroductionToCoordinateGeometry CBSESamplePapers CBSESamplePapersClass8Maths CBSESamplePapersClass9Maths CBSESamplePapersClass10Maths CBSESamplePapersClass11Maths CBSESamplePapersClass12Maths CBSEPreviousYearQuestionPapers CBSEPreviousYearQuestionPapersClass12Maths CBSEPreviousYearQuestionPapersClass10Maths ICSESamplePapers ICSESamplePapersClass8Maths ICSESamplePapersClass9Maths ICSESamplePapersClass10Maths ISCSamplePapersClass11Maths ISCSamplePapersClass12Maths ICSEPreviousYearQuestionPapers ICSEPreviousYearQuestionPapersClass10 ISCPreviousYearQuestionPapersClass12Maths JoinBYJU'SLearningProgram Grade/Exam Class1 Class2 Class3 Class4 Class5 Class6 Class7 Class8 Class9 Class10 Class11 Class12 IAS CAT BankExam GATE Submit × BookaFreeClass Share Share Share CallUs RegisterwithBYJU'S&DownloadFreePDFs * SendOTP * * * * * Grade Class1 Class2 Class3 Class4 Class5 Class6 Class7 Class8 Class9 Class10 Class11 Class12 IAS CAT BankExam DownloadNow BOOK FreeClass BOOK FreeClass



請為這篇文章評分?