The Exponential Distribution | Introduction to Statistics

文章推薦指數: 80 %
投票人數:10人

The exponential distribution is often concerned with the amount of time until some specific event occurs. For example, the amount of time (beginning now) ... Skiptomaincontent Interestedinteachingthiscourse? Lumencanhelp!Reviewourup-to-dateIntroduction to Statisticsbyclickingthelinkbelow.Fromthere,youcanrequestademoandreviewthecoursematerialsinyourLearning Management System (LMS). ReviewThisCourse Close IntroductiontoStatistics Module5:ContinuousRandomVariables Searchfor: TheExponentialDistribution LearningOutcomes Recognizetheexponentialprobabilitydistributionandapplyitappropriately The exponentialdistributionisoftenconcernedwiththeamountoftimeuntilsomespecificeventoccurs.Forexample,theamountoftime(beginningnow)untilanearthquakeoccurshasanexponentialdistribution.Otherexamplesincludethelength,inminutes,oflongdistancebusinesstelephonecalls,andtheamountoftime,inmonths,acarbatterylasts.Itcanbeshown,too,thatthevalueofthechangethatyouhaveinyourpocketorpurseapproximatelyfollowsanexponentialdistribution. Valuesforanexponentialrandomvariableoccurinthefollowingway.Therearefewerlargevaluesandmoresmallvalues.Forexample,theamountofmoneycustomersspendinonetriptothesupermarketfollowsanexponentialdistribution.Therearemorepeoplewhospendsmallamountsofmoneyandfewerpeoplewhospendlargeamountsofmoney. Theexponentialdistributioniswidelyusedinthefieldofreliability.Reliabilitydealswiththeamountoftimeaproductlasts. Example Let X=amountoftime(inminutes)apostalclerkspendswithhisorhercustomer.Thetimeisknowntohaveanexponentialdistributionwiththeaverageamountoftimeequaltofourminutes. Xisacontinuousrandomvariablesincetimeismeasured.Itisgiventhatμ=4minutes.Todoanycalculations,youmustknowm,thedecayparameter. [latex]{m}=\frac{1}{\mu}[/latex].Therefore, [latex]{m}=\frac{1}{4}={0.25}[/latex] Thestandarddeviation,σ,isthesameasthemean.μ=σ ThedistributionnotationisX~Exp(m).Therefore,X~Exp(0.25). Theprobabilitydensityfunctionisf(x)=me–mx.Thenumbere=2.71828182846…Itisanumberthatisusedofteninmathematics.Scientificcalculatorshavethekey“ex.”Ifyouenteroneforx,thecalculatorwilldisplaythevaluee. Thecurveis: f(x)=0.25e–0.25xwherexisatleastzeroandm=0.25. Forexample,f(5)=0.25e−(0.25)(5)=0.072.Thepostalclerkspendsfiveminuteswiththecustomers. Thegraphisasfollows: Noticethegraphisadecliningcurve.Whenx=0, f(x)=0.25e(−0.25)(0)=(0.25)(1)=0.25=m.Themaximumvalueonthey-axisism.  Example Usingtheinformationinexample1,findtheprobabilitythataclerkspendsfourtofiveminuteswitharandomlyselectedcustomer. Thecurveis: X~Exp(0.125);f(x)=0.125e–0.125x a)FindP(47).Drawthegraph. P(x>7)=1–P(x<7). SinceP(Xx)=1–(1–e–mx)=e-mx P(x>7)=e(–0.1)(7)=0.4966.Theprobabilitythatacomputerpartlastsmorethansevenyearsis0.4966. Onthehomescreen,entere^(-.1*7). b) Ontheaverage,howlongwouldfivecomputerpartslastiftheyareusedoneafteranother? Solution: Ontheaverage,onecomputerpartlaststenyears.Therefore,fivecomputerparts,iftheyareusedonerightaftertheotherwouldlast,ontheaverage,(5)(10)=50years. c) Eightypercentofcomputerpartslastatmosthowlong? Solution: Findthe80thpercentile.Drawthegraph.Letk=the80thpercentile. Solvefork: [latex]{k}=\frac{ln(1-0.80)}{-0.1}={16.1}[/latex] Eightypercentofthecomputerpartslastatmost16.1years. Solution: FindP(95)=0.6592   Example Thetimespentwaitingbetweeneventsisoftenmodeledusingtheexponentialdistribution.Forexample,supposethatanaverageof30customersperhourarriveatastoreandthetimebetweenarrivalsisexponentiallydistributed. Onaverage,howmanyminuteselapsebetweentwosuccessivearrivals? Whenthestorefirstopens,howlongonaveragedoesittakeforthreecustomerstoarrive? Afteracustomerarrives,findtheprobabilitythatittakeslessthanoneminuteforthenextcustomertoarrive. Afteracustomerarrives,findtheprobabilitythatittakesmorethanfiveminutesforthenextcustomertoarrive. Seventypercentofthecustomersarrivewithinhowmanyminutesofthepreviouscustomer? Isanexponentialdistributionreasonableforthissituation? Solutions: Sinceweexpect30customerstoarriveperhour(60minutes),weexpectonaverageonecustomertoarriveeverytwominutesonaverage. Sinceonecustomerarriveseverytwominutesonaverage,itwilltakesixminutesonaverageforthreecustomerstoarrive. LetX=thetimebetweenarrivals,inminutes.Byparta,μ=2,som=12=0.5. Therefore,X∼Exp(0.5).ThecumulativedistributionfunctionisP(X5)=1–P(X<5)=1–(1–e(–5)(0.5))=e–2.5≈0.0821. Wewanttosolve0.70=P(Xr+t|X>r)=P(X>t)forallr≥0andt≥0 Forexample,iffiveminuteshaselapsedsincethelastcustomerarrived,thentheprobabilitythatmorethanoneminutewillelapsebeforethenextcustomerarrivesiscomputedbyusingr=5andt=1intheforegoingequation. P(X>5+1|X>5)=P(X>1)=e(–0.5)(1)≈0.6065. Thisisthesameprobabilityasthatofwaitingmorethanoneminuteforacustomertoarriveafterthepreviousarrival. Theexponentialdistributionisoftenusedtomodelthelongevityofanelectricalormechanicaldevice.Inexample1,thelifetimeofacertaincomputerparthastheexponentialdistributionwithameanoftenyears(X~Exp(0.1)).Thememorylesspropertysaysthatknowledgeofwhathasoccurredinthepasthasnoeffectonfutureprobabilities.Inthiscaseitmeansthatanoldpartisnotanymorelikelytobreakdownatanyparticulartimethanabrandnewpart.Inotherwords,thepartstaysasgoodasnewuntilitsuddenlybreaks.Forexample,iftheparthasalreadylastedtenyears,thentheprobabilitythatitlastsanothersevenyearsisP(X>17|X>10)=P(X>7)=0.4966. Example Refertoexample1,wherethetimeapostalclerkspendswithhisorhercustomerhasanexponentialdistributionwithameanoffourminutes.Supposeacustomerhasspentfourminuteswithapostalclerk.Whatistheprobabilitythatheorshewillspendatleastanadditionalthreeminuteswiththepostalclerk? ThedecayparameterofXism=14=0.25,soX∼Exp(0.25). ThecumulativedistributionfunctionisP(X7|X>4).ThememorylesspropertysaysthatP(X>7|X>4)=P(X>3),sowejustneedtofindtheprobabilitythatacustomerspendsmorethanthreeminuteswithapostalclerk. ThisisP(X>3)=1–P(X<3)=1–(1–e–0.25⋅3)=e–0.75≈0.4724.     RelationshipbetweenthePoissonandtheExponentialDistribution ThereisaninterestingrelationshipbetweentheexponentialdistributionandthePoissondistribution.Supposethatthetimethatelapsesbetweentwosuccessiveeventsfollowstheexponentialdistributionwithameanofμunitsoftime.Alsoassumethatthesetimesareindependent,meaningthatthetimebetweeneventsisnotaffectedbythetimesbetweenpreviousevents.Iftheseassumptionshold,thenthenumberofeventsperunittimefollowsaPoissondistributionwithmeanλ=1/μ.Recall thatifXhasthePoissondistributionwithmeanλ,then[latex]P(X=k)=\frac{{\lambda}^{k}{e}^{-\lambda}}{k!}[/latex].Conversely,ifthenumberofeventsperunittimefollowsaPoissondistribution,thentheamountoftimebetweeneventsfollowstheexponentialdistribution.(k!=k*(k-1*)(k–2)*(k-3)…3*2*1) Example Atapolicestationinalargecity,callscomeinatanaveragerateoffourcallsperminute.Assumethatthetimethatelapsesfromonecalltothenexthastheexponentialdistribution.Takenotethatweareconcernedonlywiththerateatwhichcallscomein,andweareignoringthetimespentonthephone.Wemustalsoassumethatthetimesspentbetweencallsareindependent.Thismeansthataparticularlylongdelaybetweentwocallsdoesnotmeanthattherewillbeashorterwaitingperiodforthenextcall.WemaythendeducethatthetotalnumberofcallsreceivedduringatimeperiodhasthePoissondistribution. Findtheaveragetimebetweentwosuccessivecalls. Findtheprobabilitythatafteracallisreceived,thenextcalloccursinlessthantenseconds. Findtheprobabilitythatexactlyfivecallsoccurwithinaminute. Findtheprobabilitythatlessthanfivecallsoccurwithinaminute. Findtheprobabilitythatmorethan40callsoccurinaneight-minuteperiod. Solutions: Onaveragetherearefourcallsoccurperminute,so15seconds,or[latex]\frac{15}{60}[/latex]=0.25minutes occurbetweensuccessivecallsonaverage. LetT=timeelapsedbetweencalls. Fromparta,[latex]\mu={0.25}[/latex],som=[latex]\frac{1}{0.25}[/latex]=4.Thus,T~Exp(4). ThecumulativedistributionfunctionisP(T40)=1–P(Y≤40)=1–0.9294=0.0707. ConceptReview IfXhasanexponentialdistributionwithmean[latex]\mu[/latex]thenthedecayparameteris[latex]m=\frac{1}{\mu}[/latex], andwewriteX∼Exp(m)wherex≥0andm>0.TheprobabilitydensityfunctionofXisf(x)= me-mx(orequivalently[latex]f(x)=\frac{1}{\mu}{e}^{\frac{-x}{\mu}}[/latex].ThecumulativedistributionfunctionofXisP(X≤x)=1–e–mx. Theexponentialdistributionhasthememorylessproperty,whichsaysthatfutureprobabilitiesdonotdependonanypastinformation.Mathematically,itsaysthatP(X>x+k|X>x)=P(X>k). IfTrepresentsthewaitingtimebetweenevents,andifT∼Exp(λ),thenthenumberofeventsXperunittimefollowsthePoissondistributionwithmeanλ.Theprobabilitydensityfunctionof[latex]P\left(X=k\right)=\frac{\lambda^{k}}{e^{-\lambda}}k![/latex]. ThismaybecomputedusingaTI-83,83+,84,84+calculatorwiththecommandpoissonpdf(λ,k).ThecumulativedistributionfunctionP(X≤k)maybecomputedusingtheTI-83,83+,84,84+calculatorwiththecommandpoissoncdf(λ,k). FormulaReview Exponential:X~Exp(m)wherem=thedecayparameter pdf:f(x)=m[latex]{e}^{-mx}[/latex] wherex≥0andm>0 cdf:P(X≤x)=1–[latex]{e}^{-mx}[/latex] mean[latex]\mu=\frac{1}{m}[/latex] standarddeviationσ=µ percentile,k:k=[latex]\frac{ln(\text{AreaToTheLeftOfK})}{-m}[/latex] Additionally P(X>x)=e(–mx) P(ax+k|X>x)=P(X>k) Poissonprobability: P(X=k)=[latex]\frac{{\lambda}^{k}{e}^{-\lambda}}{k!}[/latex]withmean[latex]\lambda[/latex] k!=k*(k-1)*(k-2)*(k-3)…3*2*1 References DatafromtheUnitedStatesCensusBureau. DatafromWorldEarthquakes,2013.Availableonlineathttp://www.world-earthquakes.com/(accessedJune11,2013). “No-hitter.”Baseball-Reference.com,2013.Availableonlineathttp://www.baseball-reference.com/bullpen/No-hitter(accessedJune11,2013). Zhou,Rick.“ExponentialDistributionlectureslides.”Availableonlineatwww.public.iastate.edu/~riczw/stat330s11/lecture/lec13.pdf‎(accessedJune11,2013). LicensesandAttributions CClicensedcontent,SharedpreviouslyOpenStax,TheExponentialDistribution.Providedby:OpenStax.Locatedat:http://cnx.org/contents/[email protected]:37/Introductory_Statistics.License:CCBY:AttributionIntroductoryStatistics.Authoredby:BarbaraIllowski,SusanDean.Providedby:OpenStax.Locatedat:http://cnx.org/contents/[email protected]:CCBY:Attribution.LicenseTerms:Downloadforfreeathttp://cnx.org/contents/[email protected] Previous Next



請為這篇文章評分?